5 research outputs found
High sugar intake via the renin-angiotensin system blunts the baroreceptor reflex in adult rats that were perinatally depleted of taurine
Perinatal taurine depletion leads to several physiological impairments in adult life, in part, due to taurineâs effects on the renin-angiotensin system, a crucial regulator of growth and differentiation during early life. The present study tests the hypothesis that perinatal taurine depletion predisposes adult female rats to impaired baroreceptor control of arterial pressure by altering the renin-angiotensin system. Female Sprague Dawley (SD) rats were fed normal rat chow and from conception to weaning drank 3% beta-alanine in water (taurine depletion, TD) or water alone (Control, C). Female offspring ate a normal rat chow and drank water with (G) or without (W) 5% glucose throughout the experiment. To test the possible role of the renin-angiotensin system, 50% of the rats received captopril (an angiotensin converting enzyme inhibitor, 400 mg/L) from 7 days before parameter measurements until the end of experiment. At 7-8 weeks of age, arterial pressure, heart rate, baroreflex control of heart rate and renal nerve activity were studied in either conscious, freely moving or anesthetized rats. Perinatal taurine depletion did not alter resting mean arterial pressure or heart rate in the adult female offspring that received either high or normal sugar intake. Captopril treatment slightly decreased mean arterial pressure but not heart rate in all groups. Compared to controls, only the TDG rats displayed blunted baroreflex responses. Captopril treatment normalized baroreflex sensitivity in TDG. The present data indicate that in perinatal taurine depleted female rats, the renin-angiotensin system underlines the ability of high sugar intake to blunt baroreceptor responses
Hepatoprotective and antioxidant effects of Cymbopogon citratus Stapf (Lemon grass) extract in paracetamolinduced hepatotoxicity in rats
Purpose: To investigate the protective effect of Cymbopogon citrates Stapf. (CS, lemongrass) extract on paracetamol (PCM)-induced hepatotoxicity in rats.Methods: The rats were orally administered CS extract (1000 mg/kg/day) for 30 days prior to induction of hepatotoxicity by a single oral administration of PCM (3 g/kg). Hepatoprotection was assessed by measuring the level of hepatic markers including aspartate transaminase (AST), alanine transaminase (ALT) and oxidant/antioxidant markers including Malondialdehyde (MDA), protein carbonyl, and glutathione (GSH) in liver homogenate and serum. Phytochemical screening of the CS extract was also performed.Results: Phytochemical screening of the extract indicate the presence of tannins, flavonoids, and phenolic compounds. Elevation of serum AST, ALT, and MDA levels along with depletion GSH in the liver were observed in rats treated with PCM alone compared with control (p < 0.05). Pre-treatment of the animal with CS extract reduced the levels of hepatic markers (AST and ALT). Pre-treatment with CS extract also significantly reduced oxidative stress induced by PCM as shown by an increase in GSH level and reduction of MDA compared to rats treated with PCM alone (p<0.05).Conclusion: The results indicate that CS possesses antioxidant activity and it exerts its effect by reducing lipid peroxidation and restoring GSH. Pre-treatment with CS extract reduces oxidative stress and ameliorates hepatic injury induced by PCM.Keywords: Cymbopogon citratus, Antioxidant, Oxidative stress, Hepatotoxicit
Effect of lemongrass water extract supplementation on atherogenic index and antioxidant status in rats
Cymbopogon citratus (DC) Stapf., commonly known as lemongrass, possesses strong antioxidant and cardiotonic properties. Lemongrass water extract contains several polyphenolic compounds including gallic acid, isoquercetin, quercetin, rutin, catechin and tannic acid. Rutin, isoquercetin catechin and quercetin are the flavonoids most abundantly found in the extract. The extract significantly decreased total cholesterol, low-density lipoprotein and atherogenic index in rats after treatment (p < 0.05). Expression of genes and protein of sterol regulatory element binding protein-1c (SREBP1c) and HMG-CoA reductase (HMGR) was also lowered significantly in treated groups (p < 0.05). Moreover, serum antioxidant capacity increased in treated rats in comparison with untreated ones (p < 0.05) and was associated with decreased serum lipid peroxidation
Effect of lemongrass water extract supplementation on atherogenic index and antioxidant status in rats
Cymbopogon citratus (DC) Stapf., commonly known as lemongrass, possesses strong antioxidant and cardiotonic properties. Lemongrass water extract contains several polyphenolic compounds including gallic acid, isoquercetin, quercetin, rutin, catechin and tannic acid. Rutin, isoquercetin catechin and quercetin are the flavonoids most abundantly found in the extract. The extract significantly decreased total cholesterol, low-density lipoprotein and atherogenic index in rats after treatment (p < 0.05). Expression of genes and protein of sterol regulatory element binding protein-1c (SREBP1c) and HMG-CoA reductase (HMGR) was also lowered significantly in treated groups (p < 0.05). Moreover, serum antioxidant capacity increased in treated rats in comparison with untreated ones (p < 0.05) and was associated with decreased serum lipid peroxidation
The Effects of Cordyceps sinensis (Berk.) Sacc. and Gymnema inodorum (Lour.) Decne. Extracts on Adipogenesis and Lipase Activity In Vitro
This study aimed to investigate the effects of Cordyceps sinensis extract (CSE) and Gymnema inodorum extract (GIE), used alone and combined, on antiadipogenesis in 3T3-L1 cells. Oil Red O staining was used to examine the effects of these extracts on inhibition of intracellular lipid accumulation in 3T3-L1 adipocytes and on lipid droplet morphology. Fourier transform-infrared (FTIR) microspectroscopy was used to examine biomolecular changes in 3T3-L1 adipocytes. The pancreatic lipase assay was used to evaluate the inhibitory effects of CSE and GIE on pancreatic lipase activity. Taken together, the results indicated that CSE, GIE, and their combination suppressed lipid accumulation. The FTIR microspectroscopy results indicated that CSE, GIE, and their combination had inhibitory effects on lipid accumulation in the adipocytes. Compared with the untreated adipocytes, the signal intensity and integrated areas of glycogen and other carbohydrates, the acyl chain of phospholipids, and the lipid/protein ratios of the CSE, GIE, alone, and combined treated adipocytes were significantly lower (p < 0.05). Combination treatment resulted in a synergistic effect on lipid accumulation reduction in the adipocytes. Principal component analysis of the biomolecular changes revealed six distinct clusters in the FTIR spectra of the sample cells. The pancreatic lipase assay results indicated that CSE and GIE inhibited the pancreatic lipase activity in a dose-dependent manner (mean ± standard error of the mean IC50 values, 2312.44 ± 176.55 ÎŒg mLâ1 and 982.24 ± 44.40 ÎŒg mLâ1, resp.). Our findings indicated that FTIR microspectroscopy has potential application for evaluation of the effectiveness of medicinal plants and for the development of infrared biochemical obesity markers useful for treating patients with obesity. These results suggested that use of CSE and GIE alone and in combination may be efficacious as a complementary therapy for hyperlipidemia and obesity management. However, clinical trials in animals and humans must first be completed