23 research outputs found
The C-terminal domain of the antiamyloid chaperone DNAJB6 binds to amyloid-β peptide fibrils and inhibits secondary nucleation
The DNAJB6 chaperone inhibits fibril formation of aggregation-prone client peptides through interaction with aggregated and oligomeric forms of the amyloid peptides. Here, we studied the role of its C-terminal domain (CTD) using constructs comprising either the entire CTD or the first two or all four of the CTD β-strands grafted onto a scaffold protein. Each construct was expressed as WT and as a variant with alanines replacing five highly conserved and functionally important serine and threonine residues in the first β-strand. We investigated the stability, oligomerization, antiamyloid activity, and affinity for amyloid-β (Aβ42) species using optical spectroscopy, native mass spectrometry, chemical crosslinking, and surface plasmon resonance technology. While DNAJB6 forms large and polydisperse oligomers, CTD was found to form only monomers, dimers, and tetramers of low affinity. Kinetic analyses showed a shift in inhibition mechanism. Whereas full-length DNAJB6 activity is dependent on the serine and threonine residues and efficiently inhibits primary and secondary nucleation, all CTD constructs inhibit secondary nucleation only, independently of the serine and threonine residues, although their dimerization and thermal stabilities are reduced by alanine substitution. While the full-length DNAJB6 inhibition of primary nucleation is related to its propensity to form coaggregates with Aβ, the CTD constructs instead bind to Aβ42 fibrils, which affects the nucleation events at the fibril surface. The retardation of secondary nucleation by DNAJB6 can thus be ascribed to the first two β-strands of its CTD, whereas the inhibition of primary nucleation is dependent on the entire protein or regions outside the CTD
Search for doubly charged Higgs boson production in multi-lepton final states with the ATLAS detector using proton-proton collisions at √s = 13TeV
A search for doubly charged Higgs bosons with pairs of prompt, isolated, highly energetic leptons with the same electric charge is presented. The search uses a proton–proton collision data sample at a centre-of-mass energy of 13 TeV corresponding to 36.1 fb −1 of integrated luminosity recorded in 2015 and 2016 by the ATLAS detector at the LHC. This analysis focuses on the decays H±±→e±e±, H±±→e±μ± and H±±→μ±μ±, fitting the dilepton mass spectra in several exclusive signal regions. No significant evidence of a signal is observed and corresponding limits on the production cross-section and consequently a lower limit on m(H±±) are derived at 95% confidence level. With ℓ±ℓ±=e±e±/μ±μ±/e±μ±, the observed lower limit on the mass of a doubly charged Higgs boson only coupling to left-handed leptons varies from 770 to 870 GeV (850 GeV expected) for B(H±±→ℓ±ℓ±)=100% and both the expected and observed mass limits are above 450 GeV for B(H±±→ℓ±ℓ±)=10% and any combination of partial branching ratios
Understanding secondary nucleation of the amyloid β peptide
Alzheimer’s Disease (AD) is a devastating neurodegenerative disease associated with massive neuronal cell death during its pathology. The involvement of the amyloid β 42 (Aβ42) peptideand its role in neurotoxicity is now well established. It is known that the production of oligomers during the aggregation of Aβ42 into highly ordered fibrils is responsible for neuronal cell death. However, the efforts in finding a cure have been greatly hindered because of the lack of understanding of the molecular mechanisms of Aβ42 aggregation. This thesis focuses on understanding the molecular mechanism of secondary nucleation, the process which is most prolific in the production of oligomers. In particular, the work focuses on intrinsicfactors affecting secondary nucleation such as hydrophobic residues and surfaces on the fibrils, which catalyze the aggregation of monomers during secondary nucleation. We also show the possibility of molecular specificity being involved in secondary nucleation, and open avenues of further studies that will help understand the molecular mechanism of this phenomenon
Role of Hydrophobicity at the N-Terminal Region of Aβ42 in Secondary Nucleation.
The self-assembly of the amyloid β 42 (Aβ42) peptide is linked to Alzheimer's disease, and oligomeric intermediates are linked to neuronal cell death during the pathology of the disease. These oligomers are produced prolifically during secondary nucleation, by which the aggregation of monomers is catalyzed on fibril surfaces. Significant progress has been made in understanding the aggregation mechanism of Aβ42; still, a detailed molecular-level understanding of secondary nucleation is lacking. Here, we explore the role of four hydrophobic residues on the unstructured N-terminal region of Aβ42 in secondary nucleation. We create eight mutants with single substitutions at one of the four positions─Ala2, Phe4, Tyr10, and Val12─to decrease the hydrophobicity at respective positions (A2T, A2S, F4A, F4S, Y10A, Y10S, V12A, and V12S) and one mutant (Y10F) to remove the polar nature of Tyr10. Kinetic analyses of aggregation data reveal that the hydrophobicity at the N-terminal region of Aβ42, especially at positions 10 and 12, affects the rate of fibril mass generated via secondary nucleation. Cryo-electron micrographs reveal that most of the mutants with lower hydrophobicity form fibrils that are markedly longer than WT Aβ42, in line with the reduced secondary nucleation rates for these peptides. The dominance of secondary nucleation, however, is still retained in the aggregation mechanism of these mutants because the rate of primary nucleation is even more reduced. This highlights that secondary nucleation is a general phenomenon that is not dependent on any one particular feature of the peptide and is rather robust to sequence perturbations
Direct observation of secondary nucleation along the fibril surface of the amyloid β 42 peptide
Alzheimer's disease is a neurodegenerative condition which involves heavy neuronal cell death linked to oligomers formed during the aggregation process of the amyloid β peptide 42 (Aβ42). The aggregation of Aβ42 involves both primary and secondary nucleation. Secondary nucleation dominates the generation of oligomers and involves the formation of new aggregates from monomers on catalytic fibril surfaces. Understanding the molecular mechanism of secondary nucleation may be crucial in developing a targeted cure. Here, the self-seeded aggregation of WT Aβ42 is studied using direct stochastic optical reconstruction microscopy (dSTORM) with separate fluorophores in seed fibrils and monomers. Seeded aggregation proceeds faster than nonseeded reactions because the fibrils act as catalysts. The dSTORM experiments show that monomers grow into relatively large aggregates on fibril surfaces along the length of fibrils before detaching, thus providing a direct observation of secondary nucleation and growth along the sides of fibrils. The experiments were repeated for cross-seeded reactions of the WT Aβ42 monomer with mutant Aβ42 fibrils that do not catalyze the nucleation of WT monomers. While the monomers are observed by dSTORM to interact with noncognate fibril surfaces, we fail to notice any growth along such fibril surfaces. This implies that the failure to nucleate on the cognate seeds is not a lack of monomer association but more likely a lack of structural conversion. Our findings support a templating role for secondary nucleation, which can only take place if the monomers can copy the underlying parent structure without steric clashes or other repulsive interactions between nucleating monomers.ISSN:0027-8424ISSN:1091-649
A Palette of Fluorescent Aβ42 Peptides Labelled at a Range of Surface-Exposed Sites
Fluorescence-based single molecule techniques provide important tools towards understanding the molecular mechanism of complex neurodegenerative diseases. This requires efficient covalent attachment of fluorophores. Here we create a series of cysteine mutants (S8C, Y10C, S26C, V40C, and A42C) of Aβ42, involved in Alzheimer’s disease, based on exposed positions in the fibril structure and label them with the Alexa-fluorophores using maleimide chemistry. Direct stochastic optical reconstruction microscopy imaging shows that all the labelled mutants form fibrils that can be detected by virtue of Alexa fluorescence. Aggregation assays and cryo-electron micrographs establish that the careful choice of labelling position minimizes the perturbation of the aggregation process and fibril structure. Peptides labelled at the N-terminal region, S8C and Y10C, form fibrils independently and with wild-type. Peptides labelled at the fibril core surface, S26C, V40C and A42C, form fibrils only in mixture with wild-type peptide. This can be understood on the basis of a recent fibril model, in which S26, V40 and A42 are surface exposed in two out of four monomers per fibril plane. We provide a palette of fluorescently labelled Aβ42 peptides that can be used to gain understanding of the complex mechanisms of Aβ42 self-assembly and help to develop a more targeted approach to cure the disease.ISSN:1422-006
The role of fibril structure and surface hydrophobicity in secondary nucleation of amyloid fibrils
Crystals, nanoparticles, and fibrils catalyze the generation of new aggregates on their surface from the same type of monomeric building blocks as the parent assemblies. This secondary nucleation process can be many orders of magnitude faster than primary nucleation. In the case of amyloid fibrils associated with Alzheimer's disease, this process leads to the multiplication and propagation of aggregates, whereby short-lived oligomeric intermediates cause neurotoxicity. Understanding the catalytic activity is a fundamental goal in elucidating the molecular mechanisms of Alzheimer's and associated diseases. Here we explore the role of fibril structure and hydrophobicity by asking whether the V18, A21, V40, and A42 side chains which are exposed on the Aβ42 fibril surface as continuous hydrophobic patches play a role in secondary nucleation. Single, double, and quadruple serine substitutions were made. Kinetic analyses of aggregation data at multiple monomer concentrations reveal that all seven mutants retain the dominance of secondary nucleation as the main mechanism of fibril proliferation. This finding highlights the generality of secondary nucleation and its independence of the detailed molecular structure. Cryo-electron micrographs reveal that the V18S substitution causes fibrils to adopt a distinct morphology with longer twist distance than variants lacking this substitution. Self- and cross-seeding data show that surface catalysis is only efficient between peptides of identical morphology, indicating a templating role of secondary nucleation with structural conversion at the fibril surface. Our findings thus provide clear evidence that the propagation of amyloid fibril strains is possible even in systems dominated by secondary nucleation rather than fragmentation
Recommended from our members
Ab oligomer dissociation is catalyzed by fibril surfaces
Oligomeric assemblies consisting of only a few protein subunits are a key species in
the cytotoxicity of neurodegenerative disorders, such as Alzheimer’s and Parkinson’s
diseases. Their lifetime in solution and their abundance, governed by the balance of
their sources and sinks, are thus important determinants of disease. While significant
advances have been made in elucidating the processes that govern oligomer production,
the mechanisms behind their dissociation are still poorly understood. Here,
we use chemical kinetic modelling to determine the fate of oligomers formed in vitro
and discuss the implications for their abundance in vivo. We discover that oligomeric
species formed predominantly on fibril surfaces, a broad class which includes the bulk of
oligomers formed by the key Alzheimer’s disease-associated Ab peptides, also dissociate
overwhelmingly on fibril surfaces, not in solution as had previously been assumed. We
monitor this “secondary nucleation in reverse” by measuring the dissociation of Ab42
oligomers in the presence and absence of fibrils via two distinct experimental methods.
Our findings imply that drugs that bind fibril surfaces to inhibit oligomer formation
may also inhibit their dissociation, with important implications for rational design of
therapeutic strategies for Alzheimer’s and other amyloid diseases
Recommended from our members
Aβ Oligomer Dissociation Is Catalyzed by Fibril Surfaces.
Publication status: PublishedFunder: FP7 Ideas: European Research Council; doi: https://doi.org/10.13039/100011199; Grant(s): 337969Oligomeric assemblies consisting of only a few protein subunits are key species in the cytotoxicity of neurodegenerative disorders, such as Alzheimer's and Parkinson's diseases. Their lifetime in solution and abundance, governed by the balance of their sources and sinks, are thus important determinants of disease. While significant advances have been made in elucidating the processes that govern oligomer production, the mechanisms behind their dissociation are still poorly understood. Here, we use chemical kinetic modeling to determine the fate of oligomers formed in vitro and discuss the implications for their abundance in vivo. We discover that oligomeric species formed predominantly on fibril surfaces, a broad class which includes the bulk of oligomers formed by the key Alzheimer's disease-associated Aβ peptides, also dissociate overwhelmingly on fibril surfaces, not in solution as had previously been assumed. We monitor this "secondary nucleation in reverse" by measuring the dissociation of Aβ42 oligomers in the presence and absence of fibrils via two distinct experimental methods. Our findings imply that drugs that bind fibril surfaces to inhibit oligomer formation may also inhibit their dissociation, with important implications for rational design of therapeutic strategies for Alzheimer's and other amyloid diseases
A Kinetic Map of the Influence of Biomimetic Lipid Model Membranes on Aβ42 Aggregation.
Funder: Cambridge Centre for Misfolding DiseaseFunder: Wellcome TrustFunder: Frances and Augustus Newman FoundationFunder: Biotechnology and Biological Sciences Research CouncilThe aggregation of the amyloid β (Aβ) peptide is one of the molecular hallmarks of Alzheimer's disease (AD). Although Aβ deposits have mostly been observed extracellularly, various studies have also reported the presence of intracellular Aβ assemblies. Because these intracellular Aβ aggregates might play a role in the onset and progression of AD, it is important to investigate their possible origins at different locations of the cell along the secretory pathway of the amyloid precursor protein, from which Aβ is derived by proteolytic cleavage. Senile plaques found in AD are largely composed of the 42-residue form of Aβ (Aβ42). Intracellularly, Aβ42 is produced in the endoplasmatic reticulum (ER) and Golgi apparatus. Since lipid bilayers have been shown to promote the aggregation of Aβ, in this study, we measure the effects of the lipid membrane composition on the in vitro aggregation kinetics of Aβ42. By using large unilamellar vesicles to model cellular membranes at different locations, including the inner and outer leaflets of the plasma membrane, late endosomes, the ER, and the Golgi apparatus, we show that Aβ42 aggregation is inhibited by the ER and Golgi model membranes. These results provide a preliminary map of the possible effects of the membrane composition in different cellular locations on Aβ aggregation and suggest the presence of an evolutionary optimization of the lipid composition to prevent the intracellular aggregation of Aβ