6 research outputs found

    Resequencing microarray probe design for typing genetically diverse viruses: human rhinoviruses and enteroviruses

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Febrile respiratory illness (FRI) has a high impact on public health and global economics and poses a difficult challenge for differential diagnosis. A particular issue is the detection of genetically diverse pathogens, i.e. human rhinoviruses (HRV) and enteroviruses (HEV) which are frequent causes of FRI. Resequencing Pathogen Microarray technology has demonstrated potential for differential diagnosis of several respiratory pathogens simultaneously, but a high confidence design method to select probes for genetically diverse viruses is lacking.</p> <p>Results</p> <p>Using HRV and HEV as test cases, we assess a general design strategy for detecting and serotyping genetically diverse viruses. A minimal number of probe sequences (26 for HRV and 13 for HEV), which were potentially capable of detecting all serotypes of HRV and HEV, were determined and implemented on the Resequencing Pathogen Microarray RPM-Flu v.30/31 (<it>Tessarae RPM-Flu</it>). The specificities of designed probes were validated using 34 HRV and 28 HEV strains. All strains were successfully detected and identified at least to species level. 33 HRV strains and 16 HEV strains could be further differentiated to serotype level.</p> <p>Conclusion</p> <p>This study provides a fundamental evaluation of simultaneous detection and differential identification of genetically diverse RNA viruses with a minimal number of prototype sequences. The results demonstrated that the newly designed RPM-Flu v.30/31 can provide comprehensive and specific analysis of HRV and HEV samples which implicates that this design strategy will be applicable for other genetically diverse viruses.</p

    Monitoring viral RNA in infected cells with LNA flow-FISH

    No full text
    We previously showed the feasibility of using locked nucleic acid (LNA) for flow cytometric–fluorescence in situ hybridization (LNA flow-FISH) detection of a target cellular mRNA. Here we demonstrate how the method can be used to monitor viral RNA in infected cells. We compared the results of the LNA flow-FISH with other methods of quantifying virus replication, including the use of an enhanced green fluorescent protein (EGFP) viral construct and quantitative reverse-transcription polymerase chain reaction. We found that an LNA probe complementary to Sindbis virus RNA is able to track the increase in viral RNA over time in early infection. In addition, this method is comparable to the EGFP construct in sensitivity, with both peaking around 3 h and at the same level of infected cells. Finally, we observed that the LNA flow-FISH method responds to the decrease in levels of viral RNA caused by antiviral medication. This technique represents a straightforward way to monitor viral infection in cells and is easily applicable to any virus

    RNA hydrolysis and inhibition of translation by a Co(III)–cyclen complex

    No full text
    Metal ion-chelator catalysts based on main-group, lanthanide, or transition metal complexes have been developed as nonenzymatic alternatives for the hydrolysis of the phosphodiester bonds in DNA and RNA. Cobalt (III), with its high-charge density, is known for its ability to hydrolyze phosphodiesters with rate constants as high as 2 × 10(−4) s(−1). We have developed a kinetically inert Co(III)-cyclen-based complex, Co(III)–cycmmb that is very potent in inhibiting the translation of RNA into protein. Contact time as short as 10 min is sufficient to achieve the complete inhibition of the translation of a concentrated luciferase RNA solution into the enzyme in a cell-free translation system. The inhibition appears to proceed through two pathways. The first pathway involves the kinetic or substitutional inertness of Co(III) for the RNA template at short contact times. This interaction is mediated through the kinetic inertness of Co(III) for the phosphate groups of the nucleotides, as well as coordination of Co(III) to the nitrogenous bases. The second pathway occurs at longer contact times and is mediated by the hydrolysis of the phosphodiester backbone. This report represents the first demonstrated use of a metal–chelate complex to achieve the inhibition of the translation of RNA into protein. This Co(III) system can be useful in its present nonsequence-specific form as a novel viral decontamination agent. When functionalized to recognize specific nucleic acid sequences, such a system could potentially be used in gene-silencing applications as an alternative to standard antisense or RNAi technologies

    Broad-spectrum respiratory tract pathogen identification using resequencing DNA microarrays

    No full text
    The exponential growth of pathogen nucleic acid sequences available in public domain databases has invited their direct use in pathogen detection, identification, and surveillance strategies. DNA microarray technology has offered the potential for the direct DNA sequence analysis of a broad spectrum of pathogens of interest. However, to achieve the practical attainment of this potential, numerous technical issues, especially nucleic acid amplification, probe specificity, and interpretation strategies of sequence detection, need to be addressed. In this report, we demonstrate an approach that combines the use of a custom-designed Affymetrix resequencing Respiratory Pathogen Microarray (RPM v.1) with methods for microbial nucleic acid enrichment, random nucleic acid amplification, and automated sequence similarity searching for broad-spectrum respiratory pathogen surveillance. Successful proof-of-concept experiments, utilizing clinical samples obtained from patients presenting adenovirus or influenza virus-induced febrile respiratory illness (FRI), demonstrate the ability of this approach for correct species- and strain-level identification with unambiguous statistical interpretation at clinically relevant sensitivity levels. Our results underscore the feasibility of using this approach to expedite the early surveillance of diseases, and provide new information on the incidence of multiple pathogens
    corecore