7 research outputs found

    Photothermal Conversion Profiling of Large-Scaled Synthesized Gold Nanorods Using Binary Surfactant with Hydroquinone as a Reducing Agent

    No full text
    Photothermal application of gold nanorods (AuNRs) is widely increasing because of their good photothermal conversion efficiency (PCE) due to local surface plasmon resonance. However, the high concentration of hexadecyltrimethylammonium bromide used in the synthesis is a concern. Moreover, the mild and commonly used reducing agent-ascorbic acid does not reduce the Au(I) to A(0) entirely, resulting in a low yield of gold nanorods. Herein we report for the first time the PCE of large-scaled synthesized AuNRs using the binary surfactant seed-mediated method with hydroquinone (HQ) as the reducing agent. The temporal evolution of the optical properties and morphology was investigated by varying the Ag concentration, HQ concentration, HCl volumes, and seed solution volume. The results showed that the seed volume, HQ concentration, and HCl volume played a significant role in forming mini-AuNRs absorbing in the 800 nm region with a shape yield of 87.7%. The as-synthesized AuNRs were successfully up-scaled to a larger volume based on the optimum synthetic conditions followed by photothermal profiling. The photothermal profiling analysis showed a temperature increase of more than 54.2 °C at 2.55 W cm−2 at a low optical density (OD) of 0.160 after 630 s irradiation, with a PCE of approximately 21%, presenting it as an ideal photothermal agent

    Photothermal Conversion Profiling of Large-Scaled Synthesized Gold Nanorods Using Binary Surfactant with Hydroquinone as a Reducing Agent

    No full text
    Photothermal application of gold nanorods (AuNRs) is widely increasing because of their good photothermal conversion efficiency (PCE) due to local surface plasmon resonance. However, the high concentration of hexadecyltrimethylammonium bromide used in the synthesis is a concern. Moreover, the mild and commonly used reducing agent-ascorbic acid does not reduce the Au(I) to A(0) entirely, resulting in a low yield of gold nanorods. Herein we report for the first time the PCE of large-scaled synthesized AuNRs using the binary surfactant seed-mediated method with hydroquinone (HQ) as the reducing agent. The temporal evolution of the optical properties and morphology was investigated by varying the Ag concentration, HQ concentration, HCl volumes, and seed solution volume. The results showed that the seed volume, HQ concentration, and HCl volume played a significant role in forming mini-AuNRs absorbing in the 800 nm region with a shape yield of 87.7%. The as-synthesized AuNRs were successfully up-scaled to a larger volume based on the optimum synthetic conditions followed by photothermal profiling. The photothermal profiling analysis showed a temperature increase of more than 54.2 °C at 2.55 W cm−2 at a low optical density (OD) of 0.160 after 630 s irradiation, with a PCE of approximately 21%, presenting it as an ideal photothermal agent

    Thermal and Medium Stability Study of Polyvidone-Modified Graphene Oxide-Coated Gold Nanorods with High Photothermal Efficiency

    No full text
    Coating gold nanorods (AuNRs) with different materials, such as polymers and graphene-based materials, has improved their biocompatibility. However, these materials have been shown to cause the instability of AuNRs in thermal and culture mediums. In addressing this issue, we herein report the synthesis, thermal and culture medium stability, and photothermal profiling of Polyvidone (PVP)-modified graphene oxide (GO)-coated AuNRs (mGO@AuNRs). The AuNRs, with a size of 40.70 nm × 9.16 nm and absorbing at 820 nm, were coated with PVP, GO, and mGO. The colloidal stability of the nanocomposites was tested in three commonly used cell culture mediums: the Roswell Park Memorial Institute 1640 (RPMI-1640), Dulbecco’s Modified Eagle Medium, (DMEM) and Dulbecco’s phosphate-buffered saline (PBS) using UV-Vis-NIR and dynamic light scattering. The GO-based nanocomposites were stable compared to PVP@AuNRs and AuNRs in all mediums. The photothermal profiling of mGO@AuNRs showed higher heat production, with the photothermal conversion efficiency of 54.8%, which is higher than the bare AuNRs, GO@AuNRs, and PVP@AuNRs. In addition, the mGO@AuNRs also showed good thermal stability at 70 °C for more than 24 h. These results present the dual coating of PVP and GO as excellent stabilising agents for AuNRs with good photothermal profiling

    Facile aqueous synthesis of ZnCuInS/ZnS–ZnS QDs with enhanced photoluminescence lifetime for selective detection of Cu(ii) ions

    No full text
    Quaternary quantum dots (QDs) have recently gained more attention due to their low toxicity, tunable wavelength, reduced or no blueshift emission upon overcoating, improved photoluminescence (PL) quantum yield, and PL lifetime when compared to their binary (II–VI) and ternary (I–III–VI) counterparts. In this work, the aqueous synthesis of ZnCuInS/ZnS–ZnS multi-shell quaternary QDs as a nanosensor for the selective detection of Cu2+ ions was reported. The as-synthesized QDs were spherical, with a particle diameter of 3.66 ± 0.81 nm, and emitted in the first near-infrared window (725 nm) with an average decay PL lifetime of 43.69 ns. The X-ray diffraction analysis showed that the QDs were of the wurtzite structure, while the Fourier transform infrared spectroscopy confirmed GSH capping through the sulphur–metal bond. Furthermore, the fluorometric study shows that the developed multi-shell QDs were selective towards Cu2+ ions compared to other metal ions via fluorescence quenching with a limit of detection of 1.4 µM, which is below the acceptable limit in drinking water

    Synthesis of NIR-II Absorbing Gelatin Stabilized Gold Nanorods and Its Photothermal Therapy Application against Fibroblast Histiocytoma Cells

    No full text
    The excellent photothermal properties of gold nanorods (Au-NRs) make them one of the most researched plasmonic photothermal nanomaterials. However, their biological applications have been hampered greatly due to surfactant-induced cytotoxicity. We herein report a simple synthesis of highly biocompatible gelatin stabilized Au-NRs (gelatin@Au-NRs) to address this issue. The optical and structural properties of the as-synthesized gelatin@Au-NRs were investigated by Zetasizer, Ultraviolet-Visible-Near Infrared (UV-Vis-NIR) spectroscopy, high-resolution transmission electron microscopy (HR-TEM), and Fourier transform infrared spectroscopy (FTIR). The as-synthesized gelatin@Au-NRs were highly crystalline and rod-like in shape with an average length and diameter of 66.2 ± 2.3 nm and 10 ± 1.6 nm, respectively. The as-synthesized gelatin@Au-NRs showed high stability in common biological media (phosphate buffer saline and Dulbecco’s Modified Eagle’s Medium) compared to CTAB capped Au-NRs. Similarly, the gelatin@Au-NRs showed an improved heat production and outstanding cell viability against two different cancer cell lines; KM-Luc/GFP (mouse fibroblast histiocytoma cell line) and FM3A-Luc (breast carcinoma cell line) compared to CTAB capped Au-NRs and PEG@Au-NRs. An in vitro photothermal therapy study against KM-Luc/GFP showed that gelatin@Au-NRs effectively destroys the cancer cells

    Highly Toughened Nanostructured Self-Assembled Epoxy-Based Material—Correlation Study between Nanostructured Morphology and Fracture Toughness—Impact Characteristics

    No full text
    We present an efficient and effective method for preparing a novel self-assembled nanostructured material with high toughness and impact strength from a blend of di-glycidyl ether of bisphenol-A (DGEBA) and epoxidized poly(styrene-block-butadiene-block-styrene) (eSBS55) tri-block copolymer. The field emission scanning electron microscopy and transmission electron microscope results show the nanostructured morphological characteristics of the blends. This study achieved the highest fracture toughness, with a fracture toughness in the form of critical stress intensity factors (KIC) value of 2.54 MPa m1/2, in epoxy/block copolymer blends compared to previous works in the field. The impact strength also increased by 116% compared to neat epoxy. This is a major advancement in epoxy toughening due to the use of a single secondary phase. The resulting highly tough and impact-resistant material is a promising candidate for coating applications in industries such as flooring, building, aerospace, and automobiles
    corecore