16 research outputs found

    Explicit pionic degrees of freedom in deuteron photodisintegration in the Delta-resonance region

    Full text link
    Photodisintegration of the deuteron above pi-threshold is studied in a coupled channel approach including N-Delta- and pi-d-channels with pion retardation in potentials and exchange currents.Comment: 5 pages latex including 6 postscript figures, talk at the 15th Int. Conf. on Few-Body Problems in Physics, Groningen, Netherlands, 22-26 July 1997. To be published in Nucl. Phys.

    Unitary ambiguity in the extraction of the E2/M1 ratio for the γN↔Δ\gamma N\leftrightarrow\Delta transition

    Full text link
    The resonant electric quadrupole amplitude in the transition γN↔Δ(1232)\gamma N\leftrightarrow\Delta(1232) is of great interest for the understanding of baryon structure. Various dynamical models have been developed to extract it from the corresponding photoproduction multipole of pions on nucleons. It is shown that once such a model is specified, a whole class of unitarily equivalent models can be constructed, all of them providing exactly the same fit to the experimental data. However, they may predict quite different resonant amplitudes. Therefore, the extraction of the E2/M1(γN↔Δ\gamma N\leftrightarrow\Delta) ratio (bare or dressed) which is based on a dynamical model using a largely phenomenological πN\pi N interaction is not unique.Comment: 10 pages revtex including 4 postscript figure

    On the extraction of electromagnetic properties of the Delta(1232) excitation from pion photoproduction

    Full text link
    Several methods for the treatment of pion photoproduction in the region of the Delta(1232) resonance are discussed, in particular the effective Lagrangian approach and the speed plot analysis are compared to a dynamical treatment. As a main topic, we discuss the extraction of the genuine resonance parts of the magnetic dipole and electric quadrupole multipoles of the electromagnetic excitation of the resonance. To this end, we try to relate the various values for the ratio R_{EM} of the E2 to M1 multipole excitation strengths for the Delta(1232) resonance as extracted by the different methods to corresponding ratios of a dynamical model. Moreover, it is confirmed that all methods for extracting resonance properties suffer from an unitary ambiguity which is due to some phenomenological contributions entering the models.Comment: 22 pages revtex including 7 postscript figure

    A model for two-proton emission induced by electron scattering

    Get PDF
    A model to study two-proton emission processes induced by electron scattering is developed. The process is induced by one-body electromagnetic operators acting together with short-range correlations, and by two-body Δ\Delta currents. The model includes all the diagrams containing a single correlation function. A test of the sensitivity of the model to the various theoretical inputs is done. An investigation of the relevance of the Δ\Delta currents is done by changing the final state angular momentum, excitation energy and momentum transfer. The sensitivity of the cross section to the details of the correlation function is studied by using realistic and schematic correlations. Results for 12^{12}C, 16^{16}O and 40^{40}Ca nuclei are presented.Comment: 30 pages, 18 figures, 3 table

    Problems with Extraction of the Nucleon to Delta(1232) Photonic Amplitudes

    Get PDF
    We investigate the model dependence and the importance of choice of database in extracting the {\it physical} nucleon-Delta(1232) electromagnetic transition amplitudes, of interest to QCD and baryon structure, from the pion photoproduction observables. The model dependence is found to be much smaller than the range of values obtained when different datasets are fitted. In addition, some inconsistencies in the current database are discovered, and their affect on the extracted transition amplitudes is discussed.Comment: Revtex, 2 figs., submitted to PR

    Investigation of the Exclusive 3He(e,e'pp)n Reaction

    Get PDF
    Cross sections for the 3He(e,e'pp)n reaction were measured over a wide range of energy and three- momentum transfer. At a momentum transfer q=375 MeV/c, data were taken at transferred energies omega ranging from 170 to 290 MeV. At omega=220 MeV, measurements were performed at three q values (305, 375, and 445 MeV/c). The results are presented as a function of the neutron momentum in the final-state, as a function of the energy and momentum transfer, and as a function of the relative momentum of the two-proton system. The data at neutron momenta below 100 MeV/c, obtained for two values of the momentum transfer at omega=220 MeV, are well described by the results of continuum-Faddeev calculations. These calculations indicate that the cross section in this domain is dominated by direct two-proton emission induced by a one-body hadronic current. Cross section distributions determined as a function of the relative momentum of the two protons are fairly well reproduced by continuum-Faddeev calculations based on various realistic nucleon-nucleon potential models. At higher neutron momentum and at higher energy transfer, deviations between data and calculations are observed that may be due to contributions of isobar currents.Comment: 14 pages, 1 table, 17 figure

    Meson exchange currents in electromagnetic one-nucleon emission

    Get PDF
    The role of meson exchange currents (MEC) in electron- and photon-induced one-nucleon emission processes is studied in a nonrelativistic model including correlations and final state interactions. The nuclear current is the sum of a one-body and of a two-body part. The two-body current includes pion seagull, pion-in-flight and the isobar current contributions. Numerical results are presented for the exclusive 16O(e,e'p)15N and 16O(\gamma,p)15N reactions. MEC effects are in general rather small in (e,e'p), while in (\gamma,p) they are always large and important to obtain a consistent description of (e,e'p) and (\gamma,p) data, with the same spectroscopic factors. The calculated (\gamma,p) cross sections are sensitive to short-range correlations at high values of the recoil momentum, where MEC effects are larger and overwhelm the contribution of correlations.Comment: 9 pages, 6 figure

    Field theory of nucleon to higher-spin baryon transitions

    Get PDF
    We discuss the nucleon to higher-spin NN- and Δ\Delta-resonance transitions by pions and photons. The higher-spin baryons are described by Rarita-Schwinger fields and, as we argue, this imposes a stringent consistency requirement on the form of the couplings. Popular πNΔ\pi N\Delta and γNΔ\gamma N\Delta couplings are inconsistent from this point of view. We construct examples of consistent interactions with the same nonrelativistic limit as the conventional ones.Comment: 5 pages, Revtex, 1 PostScript figure; published versio

    Determination of the E2/M1 Ratio in the \gamma N \to \Delta(1232) Transition from a Simultaneous Measurement of p(\vec{\gamma},p)\pi^0 and p(\vec{\gamma},\pi^+)n

    Full text link
    Tagged linearly polarized photons have been used at the Mainz Microtron MAMI for simultaneous measurements of the p(\vec{\gamma},p)\pi^0 and p(\vec{\gamma},\pi^+)n reaction channels to study the \gamma N \to \Delta(1232) transition. The energy dependence of the magnetic dipole M_{1+}^{3/2} and electric quadrupole E_{1+}^{3/2} amplitudes have been extracted from these data in the photon energy range from 270 to 420 MeV. The E2/M1 ratio for the \gamma N \to \Delta(1232) transition has been determined to be - (2.5+-0.1_{stat}+-0.2_{sys}) % at the resonance position delta_{33}=90^0.Comment: 25 pages Latex including 13 postscript figures submitted for publication in Phys. Rev.

    Explicit pionic degrees of freedom in deuteron photodisintegration in the Δ-resonance region

    No full text
    Introduction Photodisintegration of the deuteron in the \Delta-resonance region is particularly interesting in order to investigate the N \Delta-interaction. None of the models developed so far is able to describe in a satisfactory manner the experimental data over the whole \Delta-resonance region (for a review see [1]). Among the most sophisticated approaches are the unitary three-body model of Tanabe and Ohta [2] and the coupled channel approach (CC) of Wilhelm and Arenhovel [3]. In both models, all free parameters were fixed in advance by fitting NN - and ĂźN-scattering, and Ăź-photoproduction on the nucleon. Consequently, no adjustable parameters remained for deuteron photodisintegration. However, it turned out that both approaches considerably underestimated the total cross section in the \Deltaregion by about 20-30% [2,3]. Another failure was the wrong shape of the differential cross section and the photon a
    corecore