2 research outputs found

    Relative CC"-Numerical Ranges for Applications in Quantum Control and Quantum Information

    Full text link
    Motivated by applications in quantum information and quantum control, a new type of CC"-numerical range, the relative CC"-numerical range denoted WK(C,A)W_K(C,A), is introduced. It arises upon replacing the unitary group U(N) in the definition of the classical CC"-numerical range by any of its compact and connected subgroups K⊂U(N)K \subset U(N). The geometric properties of the relative CC"-numerical range are analysed in detail. Counterexamples prove its geometry is more intricate than in the classical case: e.g. WK(C,A)W_K(C,A) is neither star-shaped nor simply-connected. Yet, a well-known result on the rotational symmetry of the classical CC"-numerical range extends to WK(C,A)W_K(C,A), as shown by a new approach based on Lie theory. Furthermore, we concentrate on the subgroup SUloc(2n):=SU(2)⊗...⊗SU(2)SU_{\rm loc}(2^n) := SU(2)\otimes ... \otimes SU(2), i.e. the nn-fold tensor product of SU(2), which is of particular interest in applications. In this case, sufficient conditions are derived for WK(C,A)W_{K}(C,A) being a circular disc centered at origin of the complex plane. Finally, the previous results are illustrated in detail for SU(2)⊗SU(2)SU(2) \otimes SU(2).Comment: accompanying paper to math-ph/070103
    corecore