8 research outputs found

    Quenched Narrow-Line Laser Cooling of 40Ca to Near the Photon Recoil Limit

    Get PDF
    We present a cooling method that should be generally applicable to atoms with narrow optical transitions. This technique uses velocity-selective pulses to drive atoms towards a zero-velocity dark state and then quenches the excited state to increase the cooling rate. We demonstrate this technique of quenched narrow-line cooling by reducing the 1-D temperature of a sample of neutral 40Ca atoms. We velocity select and cool with the 1S0(4s2) to 3P1(4s4p) 657 nm intercombination line and quench with the 3P1(4s4p) to 1S0(4s5s) intercombination line at 553 nm, which increases the cooling rate eight-fold. Limited only by available quenching laser power, we have transferred 18 % of the atoms from our initial 2 mK velocity distribution and achieved temperatures as low as 4 microK, corresponding to a vrms of 2.8 cm/s or 2 recoils at 657 nm. This cooling technique, which is closely related to Raman cooling, can be extended to three dimensions.Comment: 5 pages, 4 figures; Submitted to PRA Rapid Communication

    Loophole-free test of the Bell inequality

    Get PDF
    Original article can be found at: http://prola.aps.org/vtoc/PRA/v51 Copyright American Physical Society. DOI: 10.1103/PhysRevA.51.5008 [Full text of this article is not available in the UHRA]An atomic cascade experiment is proposed that includes the detection of a recoil atom after the emission of two photons. This would permit testing of the Bell inequality without the need for additional assumptions, provided that the quantum efficiency of single-photon detectors exceeds a threshold of 0.92. The atomic source consists of calcium atoms, first trapped and then accelerated by gravity, whose velocity is controlled before they reach the interaction region with the two counterpropagating laser beams. The procedure allows a relatively high background in the photodetectors.Peer reviewe

    Lasers and Coherent Light Sources

    Full text link

    Assessing written work by determining competence to achieve the module-specific learning outcomes.

    Full text link
    This chapter describes lasers and other sources of coherent light that operate in a wide wavelength range. First, the general principles for the generation of coherent continuous-wave and pulsed radiation are treated including the interaction of radiation with matter, the properties of optical resonators and their modes as well as such processes as Q-switching and mode-locking. The general introduction is followed by sections on numerous types of lasers, the emphasis being on todayʼs most important sources of coherent light, in particular on solid-state lasers and several types of gas lasers. An important part of the chapter is devoted to the generation of coherent radiation by nonlinear processes with optical parametric oscillators, difference- and sum-frequency generation, and high-order harmonics. Radiation in the extended ultraviolet (EUV) and x-ray ranges can be generated by free electron lasers (FEL) and advanced x-ray sources. Ultrahigh light intensities up to 1021 W/cm2 open the door to studies of relativistic laser–matter interaction and laser particle acceleration. The chapter closes with a section on laser stabilization
    corecore