764 research outputs found
Glucose and pyruvate catabolism in Litomosoides carinii
The filarial worm Litomosoides carinii showed a rapid uptake of glucose during in vitro incubation. This uptake proceeded linearly with time, and was significantly higher under aerobic compared to anoxic conditions. Under an atmosphere of nitrogen the worms converted glucose almost quantitatively to lactate, whereas in the presence of oxygen appreciable quantities of acetate, acetoin and CO2, in addition to lactate, were formed. Although aerobically only 73% of the carbohydrate carbon could be accounted for by the latter products as well as by a net glycogen synthesis, attempts to identify other compounds presumed to be derived from glucose metabolism have been unsuccessful. The complete sequence of the glycolytic enzymes was detected in particulate-free cytosolic extracts of the filarial worm. With the exception of 6-phosphofructokinase, all glycolytic enzyme activities were considerably higher than those reported for rat liver. In addition, L. carinii possesses the entire set of enzymes catalysing the eight successive reaction steps of the tricarboxylic acid cycle. On a mitochondrial protein basis, the specific activities of these enzymes were similar to those present in rat liver. Various enzymatic activities of the mitochondrial respiratory chain were detected in the parasite. These include low levels of NADH and cytochrome c oxidases, but a high activity value for NADH dehydrogenase. Cell-free extracts and the mitochondrial fraction of the worms were found to exhibit an enzyme capable of catalysing the decarboxylation of pyruvate. Since this activity was stimulated 5- to 20-fold by the cofactors known to be required by the pyruvate dehydrogenase complex of other animal cells, pyruvate decarboxylation and thus acetate formation in the parasite may be mediated by an enzyme similar to, or identical with, the pyruvate dehydrogenase system. Isotopic carbon balance studies and experiments in which substrates specifically labelled with 14C were employed showed that substrate carbon can to some extent enter into respiratory CO2. From these and the enzymatic analyses it is suggested that complete oxidation of carbon substrate may be of relevance as an energy-conserving pathway in the filarial wor
The search for planetary mass companions to field brown dwarfs with HST/NICMOS
We present the results of a high-resolution spectral differential imaging
survey of 12 nearby, relatively young field L dwarfs (<1 Gyr) carried out with
HST/NICMOS to search for planetary mass companions at small physical
separations from their host. The survey resolved two brown dwarf binaries: the
L dwarf system Kelu-1AB and the newly discovered L/T transition system 2MASS
J031059+164815AB. For both systems common proper motion has already been
confirmed in follow-up observations which have been published elsewhere. The
derived separations of the binaries are smaller than 6 AU and consistent with
previous brown dwarf binary statistics. Their mass ratios of q > 0.8 confirm
the preference for equal mass systems similar to a large number of other
surveys. Furthermore, we found tentative evidence for a companion to the L4
dwarf 2MASS W033703-175807, straddling the brown dwarf/planetary mass boundary
and revealing an uncommonly low mass ratio system (q ~ 0.2) compared to the
vast majority of previously found brown dwarf binaries. With a derived minimum
mass of 10 - 15 Mjup, a planetary nature of the secondary cannot be ruled out
yet. However, it seems more likely to be a very low mass brown dwarf secondary
at the border of the spectral T/Y transition regime, primarily due to its
similarities to recently found very cool T dwarfs. This would make it one of
the closest resolved brown dwarf binaries (0.087" 0.015", corresponding
to 2.52 0.44 AU at a distance of 29 pc) with the coolest (Teff ~ 600-630
K) and least massive companion to any L or T dwarf.Comment: 33 pages, 8 figures, 2 tables, accepted for publication by Ap
A multiplicity survey of the ρ Ophiuchi molecular clouds
Wetensch. publicatieFaculteit der Wiskunde en Natuurwetenschappe
Variable accretion as a mechanism for brightness variations in T Tau S
(Note: this is a shortened version of the original A&A-style structured
abstract). The physical nature of the strong photometric variability of T Tau
Sa, the more massive member of the Southern "infrared companion" to T Tau, has
long been debated. Intrinsic luminosity variations due to variable accretion
were originally proposed but later challenged in favor of apparent fluctuations
due to time-variable foreground extinction. In this paper we use the timescale
of the variability as a diagnostic for the underlying physical mechanism.
Because the IR emission emerging from Sa is dominantly thermal emission from
circumstellar dust at <=1500K, we can derive a minimum size of the region
responsible for the time-variable emission. In the context of the variable
foreground extinction scenario, this region must be (un-) covered within the
variability timescale, which implies a minimum velocity for the obscuring
foreground material. If this velocity supercedes the local Kepler velocity we
can reject foreground extinction as a valid variability mechanism. The variable
accretion scenario allows for shorter variability timescales since the
variations in luminosity occur on much smaller scales, essentially at the
surface of the star, and the disk surface can react almost instantly on the
changing irradiation with a higher or lower dust temperature and according
brightness. We have detected substantial variations at long wavelengths in T
Tau S: +26% within four days at 12.8 micron. We show that this short-term
variability cannot be due to variable extinction and instead must be due to
variable accretion. Using a radiative transfer model of the Sa disk we show
that variable accretion can in principle also account for the much larger
(several magnitude) variations observed on timescales of several years. For the
long-term variability, however, also variable foreground extinction is a viable
mechanism.Comment: 15 pages, 8 figures, Accepted for publication in Astronomy and
Astrophysic
Mid-infrared interferometry with K band fringe-tracking I. The VLTI MIDI+FSU experiment
Context: A turbulent atmosphere causes atmospheric piston variations leading
to rapid changes in the optical path difference of an interferometer, which
causes correlated flux losses. This leads to decreased sensitivity and accuracy
in the correlated flux measurement. Aims: To stabilize the N band
interferometric signal in MIDI (MID-infrared Interferometric instrument), we
use an external fringe tracker working in K band, the so-called FSU-A (fringe
sensor unit) of the PRIMA (Phase-Referenced Imaging and Micro-arcsecond
Astrometry) facility at VLTI. We present measurements obtained using the newly
commissioned and publicly offered MIDI+FSU-A mode. A first characterization of
the fringe-tracking performance and resulting gains in the N band are
presented. In addition, we demonstrate the possibility of using the FSU-A to
measure visibilities in the K band. Methods: We analyzed FSU-A fringe track
data of 43 individual observations covering different baselines and object K
band magnitudes with respect to the fringe-tracking performance. The N band
group delay and phase delay values could be predicted by computing the relative
change in the differential water vapor column density from FSU-A data.
Visibility measurements in the K band were carried out using a scanning mode of
the FSU-A. Results: Using the FSU-A K band group delay and phase delay
measurements, we were able to predict the corresponding N band values with high
accuracy with residuals of less than 1 micrometer. This allows the coherent
integration of the MIDI fringes of faint or resolved N band targets,
respectively. With that method we could decrease the detection limit of
correlated fluxes of MIDI down to 0.5 Jy (vs. 5 Jy without FSU-A) and 0.05 Jy
(vs. 0.2 Jy without FSU-A) using the ATs and UTs, respectively. The K band
visibilities could be measured with a precision down to ~2%.Comment: 11 pages, 13 figures, Accepted for publication in A&
Tubular structures of GaS
In this Brief Report we demonstrate, using density-functional tight-binding theory, that gallium sulfide (GaS) tubular nanostructures are stable and energetically viable. The GaS-based nanotubes have a semiconducting direct gap which grows towards the value of two-dimensional hexagonal GaS sheet and is in contrast to carbon nanotubes largely independent of chirality. We further report on the mechanical properties of the GaS-based nanotubes
Spatially resolved mid-infrared observations of the triple system T Tauri
To enhance our knowledge of the characteristics and distribution of the
circumstellar dust associated with the individual components of the young
hierarchical triple system T Tau, observations in the N-band with MIDI at the
VLTI were performed. Our study is based on both the interferometric and the
spectrophotometric measurements and is supplemented by new visual and infrared
photometry. Also, the phases were investigated to determine the dominating
mid-infrared source in the close southern binary. The data were fit with the
help of a sophisticated physical disc model. This model utilises the radiative
transfer code MC3D that is based on the Monte-Carlo method. Extended
mid-infrared emission is found around all three components of the system.
Simultaneous fits to the photometric and interferometric data confirm the
picture of an almost face-on circumstellar disc around T Tau N. Towards this
star, the silicate band is seen in emission. This emission feature is used to
model the dust content of the circumstellar disc. Clear signs of dust
processing are found. Towards T Tau S, the silicate band is seen in absorption.
This absorption is strongly pronounced towards the infrared companion T Tau Sa
as can be seen from the first individual N-band spectra for the two southern
components. Our fits support the previous suggestion that an almost edge-on
disc is present around T Tau Sa. This disc is thus misaligned with respect to
the circumstellar disc around T Tau N. The interferometric data indicate that
the disc around T Tau Sa is oriented in the north-south direction, which
favours this source as launching site for the east-western jet. We further
determine from the interferometric data the relative positions of the
components of the southern binary.Comment: 24 pages, 19 figures, accepted for publication in A&
p-Adic Models of Ultrametric Diffusion Constrained by Hierarchical Energy Landscapes
We demonstrate that p-adic analysis is a natural basis for the construction
of a wide variety of the ultrametric diffusion models constrained by
hierarchical energy landscapes. A general analytical description in terms of
p-adic analysis is given for a class of models. Two exactly solvable examples,
i.e. the ultrametric diffusion constraned by the linear energy landscape and
the ultrametric diffusion with reaction sink, are considered. We show that such
models can be applied to both the relaxation in complex systems and the rate
processes coupled to rearrangenment of the complex surrounding.Comment: 14 pages, 6 eps figures, LaTeX 2.0
Resolving the L/T transition binary SDSS J2052-1609 AB
Binaries provide empirical key constraints for star formation theories, like
the overall binary fraction, mass ratio distribution and the separation
distribution. They play a crucial role to calibrate the output of theoretical
models, like absolute magnitudes, colors and effective temperature depending on
mass, metallicity and age. We present first results of our on-going
high-resolution imaging survey of late type brown dwarfs. The survey aims at
resolving tight brown dwarf binary systems to better constrain the T dwarf
binary fraction. We intent to follow-up the individual binaries to determine
orbital parameters. Using NACO at the VLT we performed AO-assisted
near-infrared observations of SDSS J2052-1609. High-spatial resolution images
of the T1 dwarf were obtained in H and Ks filters. We resolved SDSS J2052-1609
into a binary system with a separation of 0.101" \pm 0.001". Archival data from
HST/NICMOS taken one year previous to our observations proves the components to
be co-moving. Using the flux ratio between the components we infer J, H and Ks
magnitudes for the resolved system. From the near-IR colors we estimate
spectral types of T1 +1 -4 and T2.5 \pm 1 for component A and B, respectively.
A first estimate of the total system mass yields Mtot > 78 Mjup, assuming a
circular orbit.Comment: 5 pages, 3 figures, 3 tables, accepted for publication by A&
- …