1,178 research outputs found

    On the analogy between vehicle and vehicle-like cavities with reverberation chambers

    Get PDF
    Deploying wireless systems in vehicles is an area of current interest. Often, it is implicitly assumed that the electromagnetic environment in vehicle cavities is analogous to that in reverberation chambers, it is therefore important to assess to what extent this analogy is valid. Specifically, the cavity time constant, electromagnetic isolation and electric field uniformity are investigated for typical vehicle and vehicle-like cavities. It is found that the time constant is a global property of the cavity (i.e., it is the same for all links). This is important, as it means that the root mean square delay spread for any link is also a property of the cavity, and thus so is the coherence bandwidth. These properties could be exploited by wireless sytems deployed in vehicles. It is also found that the field distribution is not homogeneous (and is therefore not uniform), but can be isotropic. For situations where the field distribution is isotropic, the spatial coherence is well defined, and therefore Multiple-Input-Multiple-Output antenna arrays can be used to improve performance of wireless systems. For situations where the field distribution is not isotropic, the angular spread is not uniform, and therefore beam-forming can be used to improve performance of wireless systems.This is the author's accepted manuscript and will be under embargo until publication. The final version is available from IEEE at http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=692843

    Mid-Infrared Ethane Emission on Neptune and Uranus

    Full text link
    We report 8- to 13-micron spectral observations of Neptune and Uranus from the NASA Infrared Telescope Facility spanning more than a decade. The spectroscopic data indicate a steady increase in Neptune's mean atmospheric 12-micron ethane emission from 1985 to 2003, followed by a slight decrease in 2004. The simplest explanation for the intensity variation is an increase in stratospheric effective temperature from 155 +/- 3 K in 1985 to 176 +/- 3 K in 2003 (an average rate of 1.2 K/year), and subsequent decrease to 165 +/- 3 K in 2004. We also detected variation of the overall spectral structure of the ethane band, specifically an apparent absorption structure in the central portion of the band; this structure arises from coarse spectral sampling coupled with a non-uniform response function within the detector elements. We also report a probable direct detection of ethane emission on Uranus. The deduced peak mole fraction is approximately an order of magnitude higher than previous upper limits for Uranus. The model fit suggests an effective temperature of 114 +/- 3 K for the globally-averaged stratosphere of Uranus, which is consistent with recent measurements indicative of seasonal variation.Comment: Accepted for publication in ApJ. 16 pages, 10 figures, 2 table

    Probing quantum and classical turbulence analogy through global bifurcations in a von K\'arm\'an liquid Helium experiment

    Get PDF
    We report measurements of the dissipation in the Superfluid Helium high REynold number von Karman flow (SHREK) experiment for different forcing conditions, through a regime of global hysteretic bifurcation. Our macroscopical measurements indicate no noticeable difference between the classical fluid and the superfluid regimes, thereby providing evidence of the same dissipative anomaly and response to asymmetry in fluid and superfluid regime. %In the latter case, A detailed study of the variations of the hysteretic cycle with Reynolds number supports the idea that (i) the stability of the bifurcated states of classical turbulence in this closed flow is partly governed by the dissipative scales and (ii) the normal and the superfluid component at these temperatures (1.6K) are locked down to the dissipative length scale.Comment: 5 pages, 5 figure

    UK experience of liver transplantation for erythropoietic protoporphyria

    Get PDF
    Erythropoietic protoporphyria (EPP) is characterised by excess production of free protoporphyrin from the bone marrow, most commonly due to deficiency of the enzyme ferrochelatase. Excess protoporphyrin gives rise to the cutaneous photosensitivity characteristic of the disease, and in a minority of patients leads to end-stage liver disease necessitating liver transplantation (LT). There is limited information regarding the timing, impact and long-term outcome of LT in such patients, thus we aimed to identify the indications and outcomes of all transplants performed for EPP in the UK using data from the UK Transplant Registry. Between 1987 and 2009, five patients underwent LT for EPP liver disease. Median follow-up was 60 months, and there were two deaths at 44 and 95 months from causes unrelated to liver disease. The remaining recipients are alive at 22.4 years, 61 months and 55 months after transplant. A high rate of postoperative biliary stricturing requiring multiple biliary interventions was observed. Recurrent EPP-liver disease occurred in 4/5 (80%) of patients but graft failure has not been observed. Given the role of biliary obstruction in inducing EPP-mediated liver damage, we suggest that consideration should be given for construction of a Roux loop at the time of transplant. Thus we demonstrate that although EPP liver transplant recipients have a good long-term survival, comparable to patients undergoing LT for other indications, biliary complications and disease recurrence are almost universal, and bone marrow transplantation should be considered where possible

    Spontaneous emission of an atom in front of a mirror

    Full text link
    Motivated by a recent experiment [J. Eschner {\it et al.}, Nature {\bf 413}, 495 (2001)], we now present a theoretical study on the fluorescence of an atom in front of a mirror. On the assumption that the presence of the distant mirror and a lens imposes boundary conditions on the electric field in a plane close to the atom, we derive the intensities of the emitted light as a function of an effective atom-mirror distance. The results obtained are in good agreement with the experimental findings.Comment: 8 pages, 6 figures, revised version, references adde

    HIV infection drives interferon signaling within intestinal SARS-CoV-2 target cells

    Get PDF
    SARS-CoV-2 infects epithelial cells of the human gastrointestinal (GI) tract and causes related symptoms. HIV infection impairs gut homeostasis and is associated with an increased risk of COVID-19 fatality. To investigate the potential link between these observations, we analyzed singlecell transcriptional profiles and SARS-CoV-2 entry receptor expression across lymphoid and mucosal human tissue from chronically HIV-infected individuals and uninfected controls. Absorptive gut enterocytes displayed the highest coexpression of SARS-CoV-2 receptors ACE2, TMPRSS2, and TMPRSS4, of which ACE2 expression was associated with canonical interferon response and antiviral genes. Chronic treated HIV infection was associated with a clear antiviral response in gut enterocytes and, unexpectedly, with a substantial reduction of ACE2 and TMPRSS2 target cells. Gut tissue from SARS-CoV-2-infected individuals, however, showed abundant SARS-CoV-2 nucleocapsid protein in both the large and small intestine, including an HIV-coinfected individual. Thus, upregulation of antiviral response genes and downregulation of ACE2 and TMPRSS2 in the GI tract of HIV-infected individuals does not prevent SARS-CoV-2 infection in this compartment. The impact of these HIVassociated intestinal mucosal changes on SARS-CoV-2 infection dynamics, disease severity, and vaccine responses remains unclear and requires further investigation

    Relativistic quantum transport theory of hadronic matter: the coupled nucleon, delta and pion system

    Full text link
    We derive the relativistic quantum transport equation for the pion distribution function based on an effective Lagrangian of the QHD-II model. The closed time-path Green's function technique, the semi-classical, quasi-particle and Born approximation are employed in the derivation. Both the mean field and collision term are derived from the same Lagrangian and presented analytically. The dynamical equation for the pions is consistent with that for the nucleons and deltas which we developed before. Thus, we obtain a relativistic transport model which describes the hadronic matter with NN, Δ\Delta and π\pi degrees of freedom simultaneously. Within this approach, we investigate the medium effects on the pion dispersion relation as well as the pion absorption and pion production channels in cold nuclear matter. In contrast to the results of the non-relativistic model, the pion dispersion relation becomes harder at low momenta and softer at high momenta as compared to the free one, which is mainly caused by the relativistic kinetics. The theoretically predicted free πN→Δ\pi N \to \Delta cross section is in agreement with the experimental data. Medium effects on the πN→Δ\pi N \to \Delta cross section and momentum-dependent Δ\Delta-decay width are shown to be substantial.Comment: 66 pages, Latex, 12 PostScript figures included; replaced by the revised version, to appear in Phys. Rev.
    • 

    corecore