26 research outputs found

    Falsification Of The Atmospheric CO2 Greenhouse Effects Within The Frame Of Physics

    Full text link
    The atmospheric greenhouse effect, an idea that many authors trace back to the traditional works of Fourier (1824), Tyndall (1861), and Arrhenius (1896), and which is still supported in global climatology, essentially describes a fictitious mechanism, in which a planetary atmosphere acts as a heat pump driven by an environment that is radiatively interacting with but radiatively equilibrated to the atmospheric system. According to the second law of thermodynamics such a planetary machine can never exist. Nevertheless, in almost all texts of global climatology and in a widespread secondary literature it is taken for granted that such mechanism is real and stands on a firm scientific foundation. In this paper the popular conjecture is analyzed and the underlying physical principles are clarified. By showing that (a) there are no common physical laws between the warming phenomenon in glass houses and the fictitious atmospheric greenhouse effects, (b) there are no calculations to determine an average surface temperature of a planet, (c) the frequently mentioned difference of 33 degrees Celsius is a meaningless number calculated wrongly, (d) the formulas of cavity radiation are used inappropriately, (e) the assumption of a radiative balance is unphysical, (f) thermal conductivity and friction must not be set to zero, the atmospheric greenhouse conjecture is falsified.Comment: 115 pages, 32 figures, 13 tables (some typos corrected

    Reactivity of Cr species grafted on SiO2/Si(100) surface: a Reflection EXAFS study down to the sub-monolayer regime

    No full text
    In situ X-ray absorption near-edge spectroscopy/extended X-ray absorption fine structure (XANES/EXAFS) experiments are conducted for the first time on a highly diluted Cr/SiO2/Si(100) system (2 Cr/nm2, representing a model of the Phillips catalyst for the ethylene polymerization) by exploiting the reflection EXAFS (ReflEXAFS) geometry. This experiment, aimed to give a contribution in bridging the gap between surface science and catalysis, demonstrates that it is possible to follow the reversible red-ox reactivity of surface species grafted on a single well-defined surface, at a concentration limit that is far below the monolayer coverage level and for a highly sensitive sample. A further improvement on the impurity level of the ReflEXAFS chamber is however required in order to be able to follow in situ the polymerization reaction. Our results demonstrate that the red-ox ability of the isolated surface Cr species is not enough to make a polymerization active species
    corecore