329 research outputs found
Molecular relaxation effects in hydrogen chloride photoacoustic detection
A photoacoustic (PA) sensor has been developed to monitor hydrogen chloride at sub-ppm level in the 1740-nm region. The system was designed to control the process in the novel low-water-peak optical fiber manufacturing process. Relaxation effects in hydrogen chloride PA detection in oxygen-helium and nitrogen-helium gas mixtures are presented, showing that the generation of the PA signal is strongly affected by the ratio of these substances. In addition, the role of water vapor in the PA signal is investigate
Near-infrared laser photoacoustic detection of methane: the impact of molecular relaxation
A photoacoustic sensor has been developed for trace-gas monitoring using a near-infrared semiconductor laser emitting in the 2ν3 band of methane at 1.65μm. The apparatus was designed for on-line process control in the manufacturing of the novel low-water-peak fibres developed for optical telecommunications. The importance of collisional relaxation processes in the generation of the photoacoustic signal is reported in the particular case of CH4 detection in dry O2 and O2-N2 mixtures. The negative influence of these effects results in a strongly reduced and phase-shifted photoacoustic signal, induced by a fast resonant coupling between the vibrational states of methane and oxygen, associated with the slow relaxation of the excited oxygen molecules. An unusual parabolic response of the sensor with respect to the methane concentration has been observed and is discussed. Finally, the beneficial effect of several species, including water vapour and helium, acting as a catalyst to hasten the relaxation of the CH4-O2 system, is demonstrate
La parole éthique des Eglises européennes face à la crise du travail (1975-1985).
Cette thèse compare et analyse les affirmations de plus de 300 publications d'Eglises européennes sur la crise de l'emploi des années 1975-1985. Il en ressort des approches concernant tantôt l'évolution de la situation économique, tantôt la place de l'emploi dans la vie humaine, tantôt les conflits sociaux autour des emplois. Les différents types de discours éthiques prononcés sont valorisés, chacun dans son espace; certains points font l'objet de remarques critiques. Ces considérations sont complétées de perspectives tirées des discours bibliques correspondants et portant sur les enjeux des débats éthiques actuels sur la place du travail dans l'économie et la société
Ammonia trace measurements at ppb level based on near-IR photoacoustic spectroscopy
A photoacoustic sensor using a laser diode emitting near 1532nm in combination with an erbium-doped fibre amplifier has been developed for ammonia trace gas analysis at atmospheric pressure. NH3 concentration measurements down to 6ppb and a noise-equivalent detection limit below 3ppb in dry air are demonstrated. Two wavelength-modulation schemes with 1f and 2f detection using a lock-in amplifier were investigated and compared to maximise the signal-to-noise ratio. A quantitative analysis of CO2 and H2O interference with NH3 is presented. Typical concentrations present in ambient air of 400ppm CO2 and 1.15% H2O (50% relative humidity at 20°C) result in a NH3 equivalent concentration of 36ppb and 100ppb, respectivel
An Optimized Spline-Based Registration of a 3D CT to a Set of C-Arm Images
We have developed an algorithm for the rigid-body registration of
a CT volume to a set of C-arm images.
The algorithm uses a gradient-based iterative minimization of a least-squares measure
of dissimilarity between the C-arm images and projections of the
CT volume. To compute projections, we use a novel method for fast
integration of the volume along rays. To improve robustness and
speed, we take advantage of a coarse-to-fine processing of the
volume/image pyramids. To compute the projections of the volume,
the gradient of the dissimilarity measure, and the multiresolution
data pyramids, we use a continuous image/volume model based on
cubic B-splines, which ensures a high interpolation accuracy and a
gradient of the dissimilarity measure that is well defined
everywhere. We show the performance of our algorithm on a human
spine phantom, where the true alignment is determined using a set
of fiducial markers
Precision Isosurface Rendering of 3-D Image Data
We address the task of rendering by ray tracing the isosurface of a high-quality continuous model of volumetric discrete and regular data. Based on first principles, we identify the quadratic B-spline as the best model for our purpose. The nonnegativity of this basis function allows us to confine the potential location of the isosurface within a binary shell. We then show how to use the space-embedding property of splines to further shrink this shell to essentially a single voxel width. Not all rays traced through a given shell voxel will intersect the isosurface; many may only graze it, especially when the ray-tracing vantage point is close or within the volume to render. We propose here an efficient heuristic to detect those cases. We present experiments to support our claims
Simple method for polarization dispersion measurements in long single-mode fibres
A novel method of polarization dispersion measurements using an interferometric loop is presented. It can be carried out using a particularly simple set-up and provides a representation of the probability distribution of the polarization dispersio
Geometric Aspects in 3D Biomedical Image Processing
We present some issues that arise when a geometric transformation is performed on an image or a volume. In particular, we illustrate the well-known problems of blocking, blurring, aliasing and ringing. Although the solution to these problems is trivial in an analog (optical) image processing system, their solution in a discrete (numeric) context is much more difficult. The modern trend of biomedical image processing is to fight these artifacts by using more sophisticated models that emphasize the quality of interpolation. For example, spline kernels offer excellent performances for a low computational cost; in addition, this compromise can be tuned by controlling the degree of the spline
Towards ultra-high resolution 3D reconstruction of a whole rat brain from 3D-PLI data
3D reconstruction of the fiber connectivity of the rat brain at microscopic
scale enables gaining detailed insight about the complex structural
organization of the brain. We introduce a new method for registration and 3D
reconstruction of high- and ultra-high resolution (64 m and 1.3 m
pixel size) histological images of a Wistar rat brain acquired by 3D polarized
light imaging (3D-PLI). Our method exploits multi-scale and multi-modal 3D-PLI
data up to cellular resolution. We propose a new feature transform-based
similarity measure and a weighted regularization scheme for accurate and robust
non-rigid registration. To transform the 1.3 m ultra-high resolution data
to the reference blockface images a feature-based registration method followed
by a non-rigid registration is proposed. Our approach has been successfully
applied to 278 histological sections of a rat brain and the performance has
been quantitatively evaluated using manually placed landmarks by an expert.Comment: 9 pages, Accepted at 2nd International Workshop on Connectomics in
NeuroImaging (CNI), MICCAI'201
Fast and Efficient Light Intensity Modulation in SOI with Gate-All-Around Transistor Phase Modulator
We report fast modulation (>30 GHz) in a SOI resonant cavity using integrated Bragg mirrors and a gate-all-around transistor as active element. Modulation depth >90% can be obtained in 12.5 μm long devices
- …