142 research outputs found

    Shapes of the Proton

    Full text link
    A model proton wave function, constructed using Poincare invariance, and constrained by recent electromagnetic form factor data, is used to study the shape of the proton. Spin-dependent quark densities are defined as matrix elements of density operators in proton states of definite spin-polarization, and shown to have an infinite variety of non-spherical shapes. For high momentum quarks with spin parallel to that of the proton, the shape resembles that of a peanut, but for quarks with anti-parallel spin the shape is that of a bagel.Comment: 8 pages, 5 figures, to be submitted to Phys. Rev. C This corrects a few typos and explains some further connections with experiment

    A dynamical chiral bag model

    Get PDF
    We study a dynamical chiral bag model, in which massless fermions are confined within an impenetrable but movable bag coupled to meson fields. The self-consistent motion of the bag is obtained by solving the equations of motion exactly assuming spherical symmetry. When the bag interacts with an external meson wave we find three different kinds of resonances: {\it fermionic}, {\it geometric}, and σ\sigma-resonances. We discuss the phenomenological implications of our results.Comment: Two columns, 11 pages, 9 figures. Submitted to Physical Review

    Analytical solution of the dynamical spherical MIT bag

    Get PDF
    We prove that when the bag surface is allowed to move radially, the equations of motion derived from the MIT bag Lagrangian with massless quarks and a spherical boundary admit only one solution, which corresponds to a bag expanding at the speed of light. This result implies that some new physics ingredients, such as coupling to meson fields, are needed to make the dynamical bag a consistent model of hadrons.Comment: Revtex, no figures. Submitted to Journal of Physics

    Nucleon Magnetic Moments Beyond the Perturbative Chiral Regime

    Get PDF
    The quark mass dependence of nucleon magnetic moments is explored over a wide range. Quark masses currently accessible to lattice QCD, which lie beyond the regime of chiral perturbation theory (chiPT), are accessed via the cloudy bag model (CBM). The latter reproduces the leading nonanalytic behavior of chiPT, while modeling the internal structure of the hadron under investigation. We find that the predictions of the CBM are succinctly described by the simple formula, \mu_N(m_\pi) = \mu^{(0)}_N / (1 + \alpha m_\pi + \beta m_\pi^2), which reproduces the lattice data, as well as the leading nonanalytic behavior of chiPT. As this form also incorporates the anticipated Dirac moment behavior in the limit m_\pi \to \infty, it constitutes a powerful method for extrapolating lattice results to the physical mass regime.Comment: Revised version accepted for publication includes a new section demonstrating extrapolations of lattice QCD result

    The Flavor Asymmetry of the Nucleon Sea

    Get PDF
    We re-examine the effects of anti-symmetry on the anti-quarks in the nucleon sea arising from gluon exchange and pion exchange between confined quarks. While the effect is primarily to suppress anti-down relative to anti-up quarks, this is numerically insignificant for the pion terms.Comment: To appear in Phys. Rev.

    Electromagnetic Form Factors of the Nucleon in an Improved Quark Model

    Get PDF
    Nucleon electromagnetic form factors are studied in the cloudy bag model (CBM) with center-of-mass and recoil corrections. This is the first presentation of a full set of nucleon form factors using the CBM. The center of mass motion is eliminated via several different momentum projection techniques and the results are compared. It is found that the shapes of these form factors are significantly improved with respect to the experimental data if the Lorentz contraction of the internal structure of the baryon is also appropriately taken into account.Comment: revtex, 28 pages, 8 ps figs include

    Effect of gluon-exchange pair-currents on the ratio G(E(P))/G(M(P))

    Full text link
    The effect of one-gluon-exchange (OGE) pair-currents on the ratio μpGEp/GMp\mu_p G_E^p/G_M^p for the proton is investigated within a nonrelativistic constituent quark model (CQM) starting from SU(6)×O(3)SU(6) \times O(3) nucleon wave functions, but with relativistic corrections. We found that the OGE pair-currents are important to reproduce well the ratio μpGEp/GMp\mu_p G_E^p/G_M^p. With the assumption that the OGE pair-currents are the driving mechanism for the violation of the scaling law we give a prediction for the ratio μnGEn/GMn\mu_n G_E^n/G_M^n of the neutron.Comment: 5 pages, 4 figure

    Correlator mixing and mass reduction as signals of chiral symmetry restoration

    Get PDF
    Chiral symmetry restoration in a dense medium is to some extent a consequence of the nuclear pion cloud. These pions induce a mixing of the axial and vector current contributions in the axial and vector correlators. We discuss their influence on hadron masses and investigate the signal produced by the remaining contribution associated with chiral symmetry restoration. Using the quark-meson coupling model we find that the latter is associated with the reduction of hadron masses.J. Delorme, M. Ericson, P. A. M. Guichon, and A. W. Thoma

    Q2Q^2 Independence of QF2/F1QF_2/F_1, Poincare Invariance and the Non-Conservation of Helicity

    Get PDF
    A relativistic constituent quark model is found to reproduce the recent data regarding the ratio of proton form factors, F2(Q2)/F1(Q2)F_2(Q^2)/F_1(Q^2). We show that imposing Poincare invariance leads to substantial violation of the helicity conservation rule, as well as an analytic result that the ratio F2(Q2)/F1(Q2)1/QF_2(Q^2)/F_1(Q^2)\sim 1/Q for intermediate values of Q2Q^2.Comment: 13 pages, 7 figures, to be submitted to Phys. Rev. C typos corrected, references added, 1 new figure to show very high Q^2 behavio

    Revealing Nuclear Pions Using Electron Scattering

    Get PDF
    A model for the pionic components of nuclear wave functions is obtained from light front dynamical calculations of binding energies and densities. The pionic effects are small enough to be consistent with measured nuclear di-muon production data and with the nucleon sea. But the pion effects are large enough to predict substantial nuclear enhancement of the cross section for longitudinally polarized virtual photons for the kinematics accessible at Jefferson Laboratory.Comment: 9 pages, 4 figure
    corecore