1 research outputs found

    Bogoliubov-de Gennes study of trapped spin-imbalanced unitary Fermi gases

    Full text link
    It is quite common that several different phases exist simultaneously in a system of trapped quantum gases of ultra-cold atoms. One such example is the strongly-interacting Fermi gas with two imbalanced spin species, which has received a great amount of attention due to the possible presence of exotic superfluid phases. By employing novel numerical techniques and algorithms, we self-consistently solve the Bogoliubov de-Gennes equations, which describe Fermi superfluids in the mean-field framework. From this study, we investigate the novel phases of spin-imbalanced Fermi gases and examine the validity of the local density approximation (LDA), which is often invoked in the extraction of bulk properties from experimental measurements within trapped systems. We show how the validity of the LDA is affected by the trapping geometry, number of atoms and spin imbalance.Comment: 15 pages, 5 figures, to be published in New J. Phys. (focus issue on "Strongly Correlated Quantum Fluids: From Ultracold Quantum Gases to QCD Plasmas"
    corecore