48 research outputs found

    Interpretable Multi-Task Deep Neural Networks for Dynamic Predictions of Postoperative Complications

    Full text link
    Accurate prediction of postoperative complications can inform shared decisions between patients and surgeons regarding the appropriateness of surgery, preoperative risk-reduction strategies, and postoperative resource use. Traditional predictive analytic tools are hindered by suboptimal performance and usability. We hypothesized that novel deep learning techniques would outperform logistic regression models in predicting postoperative complications. In a single-center longitudinal cohort of 43,943 adult patients undergoing 52,529 major inpatient surgeries, deep learning yielded greater discrimination than logistic regression for all nine complications. Predictive performance was strongest when leveraging the full spectrum of preoperative and intraoperative physiologic time-series electronic health record data. A single multi-task deep learning model yielded greater performance than separate models trained on individual complications. Integrated gradients interpretability mechanisms demonstrated the substantial importance of missing data. Interpretable, multi-task deep neural networks made accurate, patient-level predictions that harbor the potential to augment surgical decision-making

    Activity and Circadian Rhythm of Sepsis Patients in the Intensive Care Unit

    Full text link
    Early mobilization of critically ill patients in the Intensive Care Unit (ICU) can prevent adverse outcomes such as delirium and post-discharge physical impairment. To date, no studies have characterized activity of sepsis patients in the ICU using granular actigraphy data. This study characterizes the activity of sepsis patients in the ICU to aid in future mobility interventions. We have compared the actigraphy features of 24 patients in four groups: Chronic Critical Illness (CCI) sepsis patients in the ICU, Rapid Recovery (RR) sepsis patients in the ICU, non-sepsis ICU patients (control-ICU), and healthy subjects. We used several statistical and circadian rhythm features extracted from the patients' actigraphy data collected over a five-day period. Our results show that the four groups are significantly different in terms of activity features. In addition, we observed that the CCI and control-ICU patients show less regularity in their circadian rhythm compared to the RR patients. These results show the potential of using actigraphy data for guiding mobilization practices, classifying sepsis recovery subtype, as well as for tracking patients' recovery.Comment: 4 pages, IEEE Biomedical and Health Informatics (BHI) 201

    Development of Computable Phenotype to Identify and Characterize Transitions in Acuity Status in Intensive Care Unit

    Full text link
    Background: In the United States, 5.7 million patients are admitted annually to intensive care units (ICU), with costs exceeding $82 billion. Although close monitoring and dynamic assessment of patient acuity are key aspects of ICU care, both are limited by the time constraints imposed on healthcare providers. Methods: Using the University of Florida Health (UFH) Integrated Data Repository as Honest Broker, we created a database with electronic health records data from a retrospective study cohort of 38,749 adult patients admitted to ICU at UF Health between 06/01/2014 and 08/22/2019. This repository includes demographic information, comorbidities, vital signs, laboratory values, medications with date and timestamps, and diagnoses and procedure codes for all index admission encounters as well as encounters within 12 months prior to index admission and 12 months follow-up. We developed algorithms to identify acuity status of the patient every four hours during each ICU stay. Results: We had 383,193 encounters (121,800 unique patients) admitted to the hospital, and 51,073 encounters (38,749 unique patients) with at least one ICU stay that lasted more than four hours. These patients requiring ICU admission had longer median hospital stay (7 days vs. 1 day) and higher in-hospital mortality (9.6% vs. 0.4%) compared with those not admitted to the ICU. Among patients who were admitted to the ICU and expired during hospital admission, more deaths occurred in the ICU than on general hospital wards (7.4% vs. 0.8%, respectively). Conclusions: We developed phenotyping algorithms that determined patient acuity status every four hours while admitted to the ICU. This approach may be useful in developing prognostic and clinical decision-support tools to aid patients, caregivers, and providers in shared decision-making processes regarding resource use and escalation of care.Comment: 21 Pages, that include 6 figures, 3 tables and 1 supplemental Tabl
    corecore