17 research outputs found

    Statistics on Lattice Walks and q-Lassalle Numbers

    Get PDF
    International audienceThis paper contains two results. First, I propose a qq-generalization of a certain sequence of positive integers, related to Catalan numbers, introduced by Zeilberger, see Lassalle (2010). These qq-integers are palindromic polynomials in qq with positive integer coefficients. The positivity depends on the positivity of a certain difference of products of qq-binomial coefficients.To this end, I introduce a new inversion/major statistics on lattice walks. The difference in qq-binomial coefficients is then seen as a generating function of weighted walks that remain in the upper half-plan.Cet document contient deux résultats. Tout d’abord, je vous propose un qq-generalization d’une certaine séquence de nombres entiers positifs, liés à nombres de Catalan, introduites par Zeilberger (Lassalle, 2010). Ces qq-integers sont des polynômes palindromiques à qq à coefficients entiers positifs. La positivité dépend de la positivité d’une certaine différence de produits de qq-coefficients binomial.Pour ce faire, je vous présente une nouvelle inversion/major index sur les chemins du réseau. La différence de qq-binomial coefficients est alors considérée comme une fonction de génération de trajets pondérés qui restent dans le demi-plan supérieur

    Statistics on Lattice Walks and q-Lassalle Numbers

    Get PDF
    This paper contains two results. First, I propose a qq-generalization of a certain sequence of positive integers, related to Catalan numbers, introduced by Zeilberger, see Lassalle (2010). These qq-integers are palindromic polynomials in qq with positive integer coefficients. The positivity depends on the positivity of a certain difference of products of qq-binomial coefficients.To this end, I introduce a new inversion/major statistics on lattice walks. The difference in qq-binomial coefficients is then seen as a generating function of weighted walks that remain in the upper half-plan

    Noncommutative Symmetric Hall-Littlewood Polynomials

    Get PDF
    Noncommutative symmetric functions have many properties analogous to those of classical (commutative) symmetric functions. For instance, ribbon Schur functions (analogs of the classical Schur basis) expand positively in noncommutative monomial basis. More of the classical properties extend to noncommutative setting as I will demonstrate introducing a new family of noncommutative symmetric functions, depending on one parameter. It seems to be an appropriate noncommutative analog of the Hall-Littlewood polynomials

    On some noncommutative symmetric functions analogous to Hall-Littlewood and Macdonald polynomials

    Full text link
    We investigate the connections between various noncommutative analogues of Hall-Littlewood and Macdonald polynomials, and define some new families of noncommutative symmetric functions depending on two sequences of parameters.Comment: 20 page

    Supercharacters, symmetric functions in noncommuting variables (extended abstract)

    Get PDF
    International audienceWe identify two seemingly disparate structures: supercharacters, a useful way of doing Fourier analysis on the group of unipotent uppertriangular matrices with coefficients in a finite field, and the ring of symmetric functions in noncommuting variables. Each is a Hopf algebra and the two are isomorphic as such. This allows developments in each to be transferred. The identification suggests a rich class of examples for the emerging field of combinatorial Hopf algebras.Nous montrons que deux structures en apparence bien différentes peuvent être identifiées: les super-caractères, qui sont un outil commode pour faire de l'analyse de Fourier sur le groupe des matrices unipotentes triangulaires supérieures à coefficients dans un corps fini, et l'anneau des fonctions symétriques en variables non-commutatives. Ces deux structures sont des algèbres de Hopf isomorphes. Cette identification permet de traduire dans une structure les dévelopements conçus pour l'autre, et suggère de nombreux exemples dans le domaine nouveau des algèbres de Hopf combinatoires

    The upper triangular algebra loop of degree 44

    Get PDF
    summary:A natural loop structure is defined on the set U4U_4 of unimodular upper-triangular matrices over a given field. Inner mappings of the loop are computed. It is shown that the loop is non-associative and nilpotent, of class 3. A detailed listing of the loop conjugacy classes is presented. In particular, one of the loop conjugacy classes is shown to be properly contained in a superclass of the corresponding algebra group

    Supercharacters, symmetric functions in noncommuting variables (extended abstract)

    Get PDF
    We identify two seemingly disparate structures: supercharacters, a useful way of doing Fourier analysis on the group of unipotent uppertriangular matrices with coefficients in a finite field, and the ring of symmetric functions in noncommuting variables. Each is a Hopf algebra and the two are isomorphic as such. This allows developments in each to be transferred. The identification suggests a rich class of examples for the emerging field of combinatorial Hopf algebras

    Statistics on Lattice Walks and q-Lassalle Numbers

    No full text
    This paper contains two results. First, I propose a qq-generalization of a certain sequence of positive integers, related to Catalan numbers, introduced by Zeilberger, see Lassalle (2010). These qq-integers are palindromic polynomials in qq with positive integer coefficients. The positivity depends on the positivity of a certain difference of products of qq-binomial coefficients.To this end, I introduce a new inversion/major statistics on lattice walks. The difference in qq-binomial coefficients is then seen as a generating function of weighted walks that remain in the upper half-plan.Cet document contient deux résultats. Tout d’abord, je vous propose un qq-generalization d’une certaine séquence de nombres entiers positifs, liés à nombres de Catalan, introduites par Zeilberger (Lassalle, 2010). Ces qq-integers sont des polynômes palindromiques à qq à coefficients entiers positifs. La positivité dépend de la positivité d’une certaine différence de produits de qq-coefficients binomial.Pour ce faire, je vous présente une nouvelle inversion/major index sur les chemins du réseau. La différence de qq-binomial coefficients est alors considérée comme une fonction de génération de trajets pondérés qui restent dans le demi-plan supérieur
    corecore