212 research outputs found
On the probability density function of the GNSS ambiguity residuals
Integer GNSS ambiguity resolution involves estimation and validation of the unknown integer carrier phase ambiguities. A problem then is that the classical theory of linear estimation does not apply to the integer GPS model, and hence rigorous validation is not possible when use is made of the classical results. As with the classical theory, a first step for being able to validate the integer GPS model is to make use of the residuals and their probabilistic properties. The residuals quantify the inconsistency between data and model, while their probabilistic properties can be used to measure the significance of the inconsistency. Existing validation methods are often based on incorrect assumptions with respect to the probabilistic properties of the parameters involved. In this contribution we will present and evaluate the joint probability density function (PDF) of the multivariate integer GPS carrier phase ambiguity residuals. The residuals and their properties depend on the integer estimation principle used. Since it is known that the integer least-squares estimator is the optimal choice from the class of admissible integer estimators, we will only focus on the PDF of the ambiguity residuals for this estimator. Unfortunately the PDF cannot be evaluated exactly. It will therefore be shown how to obtain a good approximation. The evaluation will be completed by some examples
DIA-datasnooping and identifiability
In this contribution, we present and analyze datasnooping in the context of the DIA method. As the DIA method for the detection, identification and adaptation of mismodelling errors is concerned with estimation and testing, it is the combination of both that needs to be considered. This combination is rigorously captured by the DIA estimator. We discuss and analyze the DIA-datasnooping decision probabilities and the construction of the corresponding partitioning of misclosure space. We also investigate the circumstances under which two or more hypotheses are nonseparable in the identification step. By means of a theorem on the equivalence between the nonseparability of hypotheses and the inestimability of parameters, we demonstrate that one can forget about adapting the parameter vector for hypotheses that are nonseparable. However, as this concerns the complete vector and not necessarily functions of it, we also show that parameter functions may exist for which adaptation is still possible. It is shown how this adaptation looks like and how it changes the structure of the DIA estimator. To demonstrate the performance of the various elements of DIA-datasnooping, we apply the theory to some selected examples. We analyze how geometry changes in the measurement setup affect the testing procedure, by studying their partitioning of misclosure space, the decision probabilities and the minimal detectable and identifiable biases. The difference between these two minimal biases is highlighted by showing the difference between their corresponding contributing factors. We also show that if two alternative hypotheses, say (Formula presented.) and (Formula presented.), are nonseparable, the testing procedure may have different levels of sensitivity to (Formula presented.)-biases compared to the same (Formula presented.)-biases
Review and principles of PPP-RTK methods
PPP-RTK is integer ambiguity resolution-enabled precise point positioning. In this contribution, we present the principles of PPP-RTK, together with a review of different mechanizations that have been proposed in the literature. By application of S-system theory, the estimable parameters of the different methods are identified and compared. Their interpretation is essential for gaining a proper insight into PPP-RTK in general, and into the role of the PPP-RTK corrections in particular. We show that PPP-RTK is a relative technique for which the ‘single-receiver user’ integer ambiguities are in fact double-differenced ambiguities. We determine the transformational links between the different methods and their PPP-RTK corrections, thereby showing how different PPP-RTK methods can be mixed between network and users. We also present and discuss four different estimators of the PPP-RTK corrections. It is shown how they apply to the different PPP-RTK models, as well as why some of the proposed estimation methods cannot be accepted as PPP-RTK proper. We determine analytical expressions for the variance matrices of the ambiguity-fixed and ambiguity-float PPP-RTK corrections. This gives important insight into their precision, as well as allows us to discuss which parts of the PPP-RTK correction variance matrix are essential for the user and which are not
GLONASS CDMA L3 ambiguity resolution and positioning
A first assessment of GLONASS CDMA L3 ambiguity resolution and positioning performance is provided. Our analyses are based on GLONASS L3 data from the satellite pair SVNs 755-801, received by two JAVAD receivers at Curtin University, Perth, Australia. In our analyses, four different versions of the two-satellite model are applied: the geometry-free model, the geometry-based model , the height-constrained geometry-based model, and the geometry-fixed model. We study the noise characteristics (carrier-to-noise density, measurement precision), the integer ambiguity resolution performance (success rates and distribution of the ambiguity residuals), and the positioning performance (ambiguity float and ambiguity fixed). The results show that our empirical outcomes are consistent with their formal counterparts and that the GLONASS data have a lower noise level than that of GPS, particularly in case of the code data. This difference is not only seen in the noise levels but also in their onward propagation to the ambiguity time series and ambiguity residuals distribution
Testing of a new single-frequency GNSS carrier phase attitude determination method: land, ship and aircraft experiments
Global navigation satellite system (GNSS) ambiguity resolution is the process of resolving the unknown cycle ambiguities of the carrier phase data as integers. The sole purpose of ambiguity resolution is to use the integer ambiguity constraints as a means of improving significantly on the precision of the remaining GNSS model parameters. In this contribution, we consider the problem of ambiguity resolution for GNSS attitude determination. We analyse the performance of a new ambiguity resolution method for GNSS attitude determination. As it will be shown, this method provides a numerically efficient, highly reliable and robust solution of the nonlinearly constrained integer least-squares GNSS compass estimators. The analyses have been done by means of a unique set of extensive experimental tests, using simulated as well as actual GNSS data and using receivers of different manufacturers and type as well as different platforms. The executed field tests cover two static land experiments, one in the Netherlands and one in Australia, and two dynamic experiments, a low-dynamics vessel experiment and high-dynamics aircraft experiment. In our analyses, we focus on stand-alone, unaided, single-frequency, single epoch attitude determination, as this is the most challenging case of GNSS compass processing
Distributional theory for the DIA method
The DIA method for the detection, identification and adaptation of model misspecifications combines estimation with testing. The aim of the present contribution is to introduce a unifying framework for the rigorous capture of this combination. By using a canonical model formulation and a partitioning of misclosure space, we show that the whole estimation–testing scheme can be captured in one single DIA estimator. We study the characteristics of this estimator and discuss some of its distributional properties. With the distribution of the DIA estimator provided, one can then study all the characteristics of the combined estimation and testing scheme, as well as analyse how they propagate into final outcomes. Examples are given, as well as a discussion on how the distributional properties compare with their usage in practice
IRNSS/NavIC and GPS: a single- and dual-system L5 analysis
The Indian Regional Navigation Satellite System (IRNSS) has recently (May 2016) become fully operational. In this contribution, for the fully operational IRNSS as a stand-alone system and also in combination with GPS, we provide a first assessment of L5 integer ambiguity resolution and positioning performance. While our empirical analyses are based on the data collected by two JAVAD receivers at Curtin University, Perth, Australia, our formal analyses are carried out for various onshore locations within the IRNSS service area. We study the noise characteristics (carrier-to-noise density, measurement precision, time correlation), the integer ambiguity resolution performance (success rates and ambiguity dilution of precision), and the positioning performance (ambiguity float and ambiguity fixed). The results show that our empirical outcomes are consistent with their formal counterparts and that the GPS L5-data have a lower noise level than that of IRNSS L5-data, particularly in case of the code data. The underlying model in our assessments varies from stand-alone IRNSS (L5) to IRNSS (Formula presented.) GPS (L5), from unconstrained to height-constrained and from kinematic to static. Significant improvements in ambiguity resolution and positioning performance are achievable upon integrating L5-data of IRNSS with GPS
Integer Least-squares Theory for the GNSS Compass
Global navigation satellite system (GNSS) carrier phase integer ambiguity resolution is the key to high-precision positioning and attitude determination. In this contribution, we develop new integer least-squares (ILS) theory for the GNSS compass model, together with efficient integer search strategies. It extends current unconstrained ILS theory to the nonlinearly constrained case, an extension that is particularly suited for precise attitude determination. As opposed to current practice, our method does proper justice to the a priori given information. The nonlinear baseline constraint is fully integrated into the ambiguity objective function, thereby receiving a proper weighting in its minimization and providing guidance for the integer search. Different search strategies are developed to compute exact and approximate solutions of the nonlinear constrained ILS problem. Their applicability depends on the strength of the GNSS model and on the length of the baseline. Two of the presented search strategies, a global and a local one, are based on the use of an ellipsoidal search space. This has the advantage that standard methods can be applied. The global ellipsoidal search strategy is applicable to GNSS models of sufficient strength, while the local ellipsoidal search strategy is applicable to models for which the baseline lengths are not too small. We also develop search strategies for the most challenging case, namely when the curvature of the non-ellipsoidal ambiguity search space needs to be taken into account. Two such strategies are presented, an approximate one and a rigorous, somewhat more complex, one. The approximate one is applicable when the fixed baseline variance matrix is close to diagonal. Both methods make use of a search and shrink strategy. The rigorous solution is efficiently obtained by means of a search and shrink strategy that uses non-quadratic, but easy-to-evaluate, bounding functions of the ambiguity objective function. The theory presented is generally valid and it is not restricted to any particular GNSS or combination of GNSSs. Its general applicability also applies to the measurement scenarios (e.g. single-epoch vs. multi-epoch, or single-frequency vs. multi-frequency). In particular it is applicable to the most challenging case of unaided, single frequency, single epoch GNSS attitude determination. The success rate performance of the different methods is also illustrated
An assessment of smartphone and low-cost multi-GNSS single-frequency RTK positioning for low, medium and high ionospheric disturbance periods
The emerging GNSSs make single-frequency (SF) RTK positioning possible. In this contribution two different types of low-cost (few hundred USDs) RTK receivers are analyzed, which can track L1 GPS, B1 BDS, E1 Galileo and L1 QZSS, or any combinations thereof, for a location in Dunedin, New Zealand. These SF RTK receivers can potentially give competitive ambiguity resolution and positioning performance to that of more expensive (thousands USDs) dual-frequency (DF) GPS receivers. A smartphone implementation of one of these SF receiver types is also evaluated. The least-squares variance component estimation (LS-VCE) procedure is first used to formulate a realistic stochastic model, which assures that our receivers at hand can achieve the best possible ambiguity resolution and RTK positioning performance. The best performing low-cost SF RTK receiver types are then assessed against DF GPS receivers and survey-grade antennas. Real data with ionospheric disturbances at low, medium and high levels are analyzed, while making use of the ionosphere-weighted model. It will be demonstrated that when the presence of the residual ionospheric delays increases, instantaneous RTK positioning is not possible for any of the receivers, and a multi-epoch model is necessary to use. It is finally shown that the low-cost SF RTK performance can remain competitive to that of more expensive DF GPS receivers even when the ionospheric disturbance level reaches a Kp-index of 7-, i.e. for a strong geomagnetic storm, for the baseline at hand
Low-cost, high-precision, single-frequency GPS–BDS RTK positioning
The integration of the Chinese BDS with other systems, such as the American GPS, makes precise RTK positioning possible with low-cost receivers. We investigate the performance of low-cost ublox receivers, which cost a few hundred USDs, while making use of L1 GPS + B1 BDS data in Dunedin, New Zealand. Comparisons will be made to L1 + L2 GPS and survey-grade receivers which cost several thousand USDs. The least-squares variance component estimation procedure is used to determine the code and phase variances and covariances of the receivers and thus formulate a realistic stochastic model. Otherwise, the ambiguity resolution and hence positioning performance would deteriorate. For the same reasons, the existence of receiver-induced time correlation is also investigated. The low-cost RTK performance is then evaluated by formal and empirical ambiguity success rates and positioning precisions. It will be shown that the code and phase precision of the low-cost receivers can be significantly improved by using survey-grade antennas, since they have better signal reception and multipath suppression abilities in comparison with low-cost patch antennas. It will also be demonstrated that the low-cost receivers can achieve competitive ambiguity resolution and positioning performance to survey-grade dual-frequency GPS receivers
- …