2 research outputs found

    Changes in regional wet heatwave in Eurasia during summer (1979–2017)

    Get PDF
    Wet heatwaves can have more impact on human health than hot dry heatwaves. However, changes in these have received little scientific attention. Using the ECMWF Reanalysis v5 reanalysis dataset, wet-bulb temperatures ( T _w ) were used to investigate the spatial-temporal variation of wet heatwaves in Eurasia for 1979–2017. Wet heatwaves were defined as three day or longer periods when T _w was above the 90th percentile of the summer distribution and characterized by amplitude, duration and frequency. Maximum values of amplitude, close to 31 °C, occur in the Indus–Ganges plain, the lower Yangtze valley, and the coasts of the Persian Gulf and Red Sea. Significant positive trends in the frequency and amplitude of wet heatwaves have occurred over most of Eurasia though with regional variations. Changes in heatwave amplitude (HWA) are largely driven by changes in summer mean T _w . For Eurasia as a whole, increases in temperature contribute more than six times the impact of changes in relative humidity (RH) to changes in T _w HWA. Changes in T _w have a strong dependence on climatological RH with an increase in RH of 1% causing a T _w increase of 0.2 °C in arid regions, and only increasing T _w by 0.1 °C in humid regions. During T _w heatwaves in Europe, parts of Tibet, India, East Asia and parts of the Arabian Peninsula both temperature and humidity contribute to the increase in T _w , with temperature the dominant driver. During wet heatwaves in part of Russia, changes in humidity are weak and the increase in T _w is mainly caused by an increase in temperature. In the Mediterranean and Central Asia, RH has fallen reducing the increase in T _w from general warming

    Inter-decadal climate variability induces differential ice response along Pacific-facing West Antarctica.

    Get PDF
    West Antarctica has experienced dramatic ice losses contributing to global sea-level rise in recent decades, particularly from Pine Island and Thwaites glaciers. Although these ice losses manifest an ongoing Marine Ice Sheet Instability, projections of their future rate are confounded by limited observations along West Antarctica's coastal perimeter with respect to how the pace of retreat can be modulated by variations in climate forcing. Here, we derive a comprehensive, 12-year record of glacier retreat around West Antarctica's Pacific-facing margin and compare this dataset to contemporaneous estimates of ice flow, mass loss, the state of the Southern Ocean and the atmosphere. Between 2003 and 2015, rates of glacier retreat and acceleration were extensive along the Bellingshausen Sea coastline, but slowed along the Amundsen Sea. We attribute this to an interdecadal suppression of westerly winds in the Amundsen Sea, which reduced warm water inflow to the Amundsen Sea Embayment. Our results provide direct observations that the pace, magnitude and extent of ice destabilization around West Antarctica vary by location, with the Amundsen Sea response most sensitive to interdecadal atmosphere-ocean variability. Thus, model projections accounting for regionally resolved ice-ocean-atmosphere interactions will be important for predicting accurately the short-term evolution of the Antarctic Ice Sheet.Carnegie Trust for the Universities of Scotland Carnegie PhD Scholarship Scottish Alliance for Geoscience, Environment and Society (SAGES) Prince Albert II of Monaco Foundation NSF Grant 2045075 European Space Agenc
    corecore