11 research outputs found

    Cooperation in the Prisoner's Dilemma Game Based on the Second-Best Decision

    Get PDF
    In the research addressing the prisoner's dilemma game, the effectiveness and accountableness of the method allowing for the emergence of cooperation is generally discussed. The most well-known solutions for this question are memory based iteration, the tag used to distinguish between defector and cooperator, the spatial structure of the game and the either direct or indirect reciprocity. We have also challenged to approach the topic from a different point of view namely that temperate acquisitiveness in decision making could be possible to achieve cooperation. It was already shown in our previous research that the exclusion of the best decision had a remarkable effect on the emergence of an almost cooperative state. In this paper, we advance the decision of our former research to become more explainable by introducing the second-best decision. If that decision is adopted, players also reach an extremely high level cooperative state in the prisoner's dilemma game and also in that of extended strategy expression. The cooperation of this extended game is facilitated only if the product of two parameters is under the criticality. In addition, the applicability of our model to the problem in the real world is discussed.Cooperation, Altruism, Agent-Based Simulation, Evolutionary Game Theory

    THE DIVERSITY IN THE DECISION FACILITATES COOPERATION IN THE SEQUENTIAL PRISONER'S DILEMMA GAME

    No full text
    The condition of cooperation in social conflicts of interest has been an interesting topic. On the one hand people usually desire to make their own profit. On the other hand, they mutually cooperate. This fact has motivated many researchers. Some solutions for this question have been proposed, and particular studies indicate that the diversity in decision-making or relationships promotes cooperation. In this research, we achieve the diversity by utilizing the novel method that refers to the mechanism of correction regarding each probability that every strategy comes to the representative by decision-making of group. This mechanism works when difference between the probability of the first and others becomes quite large. If once every group adopts this corrected decision, he/she achieves mutual cooperation of high level in the sequential prisoner's dilemma game in case the number of strategies (= players) is within the definite range. We also note that this game can effectively describe the property of evolution of strategy only with a small number of players. When each group has many players, in contrast to previous research, the decision with correction also has an effect on the suppression of prevalence of defection. In addition, we also show that the decision of this model is analogous to the system of redistribution of revenue, which provides balance of strength between several teams in professional sports.Cooperation, diversity in decision-making, evolutionary game theory, group interactions
    corecore