29 research outputs found

    Esophageal transit study using a sliding sum image: application to patients with probable and definite systemic sclerosis

    Get PDF
    金沢大学医薬保健研究域医学系Purpose: Esophageal complication is common in systemic sclerosis (SSc), but scintigraphic transit patterns based on each subtype have not been understood well. The aim of this study was to develop a new algorithm for integrating a dynamic esophageal transit study and to apply the method to patients with SSc. Methods: A total of 40 patients suspected of having SSc were examined by a dynamic esophageal transit study. The subtypes included 32 with definite SSc (15 limited cutaneous type and 17 diffuse cutaneous type) and 8 with probable SSc. The serial esophageal images were shifted and summed to a functional image (sliding sum image) and compared to a conventional condensed image analysis. Esophageal retention fraction at 90 s (R90) and half-time (T1/2) of transit were also measured. Results: The four patterns of the sliding sum image and condensed image agreed in all patients. Abnormal retention patterns were observed in none of the 8 (0%) patients with the probable SSc and in 15 of 32 (47%) patients with definite SSc (p = 0.014). The severity of scleroderma assessed by modified Rodnan skin thickness score correlated with that of esophageal retention R90 (p = 0.04). Conclusion: The sliding sum image is a simple and effective method for integrating esophageal transit. Patients with definite SSc and severe scleroderma had significantly higher retention patterns, while probable SSc patients showed no esophageal dysmotility. © 2011 The Japanese Society of Nuclear Medicine

    Quantification of myocardial perfusion SPECT using freeware package (cardioBull)

    Get PDF
    Objective: We have developed freeware package for automatically quantifying myocardial perfusion and 123I-labeled radiopharmaceutical single-photon emission computed tomography (SPECT), which is called "cardioBull". We aim to evaluate diagnostic performance of the detection of coronary artery disease (CAD) on the developed software in comparison with commercially available software package [Quantitative Perfusion SPECT (QPS)]. Methods: Stress-rest 99mTc-sestamibi myocardial perfusion SPECT was performed in 36 patients with CAD and 35 control patients. A ≥75% stenosis in the coronary artery was identified by coronary angiography in the CAD group. Segmental perfusion defect score was automatically calculated by both cardioBull and QPS software. Summed stress score (SSS) was obtained to detect CAD by the receiver operator characteristic (ROC) analysis. Areas under the ROC curves (AUC) were calculated in patient-based and coronary-based analyses. Results: Mean SSSs showed no significant difference between cardioBull and QPS (6.0 ± 7.1 vs. 5.6 ± 7.0). The AUC for cardioBull was equivalent to that for QPS (0.91 ± 0.04 vs. 0.87 ± 0.04, p = n.s.). Sensitivity, specificity, and accuracy for cardioBull were 89, 74, and 82%, respectively. For the regional detection of CAD, the AUC showed largest value in left anterior descending coronary artery (LAD) territory (0.86 ± 0.06 for cardioBull, 0.87 ± 0.06 for QPS, p = n.s.). Sensitivity, specificity and accuracy of cardioBull were 70, 88, and 83% for the LAD; 91, 62, and 66% for the left circumflex coronary artery (LCx); and 78, 69, and 70% for the right coronary artery (RCA), respectively. Conclusions: The AUC, sensitivity, specificity and accuracy for the detection of CAD showed high diagnostic performance on the developed software. In addition, the developed software provided comparable diagnostic performance to the commercially available software package. © 2011 The Japanese Society of Nuclear Medicine

    Standardization of the heart-to-mediastinum ratio of 123I- labelled-metaiodobenzylguanidine uptake using the dual energy window method: Feasibility of correction with different camera-collimator combinations

    Get PDF
    金沢大学附属病院核医学診療科Background: Although the heart-to-mediastinum (H/M) ratio in a planar image has been used for practical quantification in 123I- metaiodobenzylguanidine (MIBG) imaging, standardization of the parameter is not yet established. We hypothesized that the value of the H/M ratio could be standardized to the various camera-collimator combinations. Methods and results: Standard phantoms consisting of the heart and mediastinum were made. A low-energy high-resolution (LEHR) collimator and a medium-energy (ME) collimator were used. We examined multi-window correction methods with 123I- dual-window (IDW) acquisition, and planar images were obtained with IDW correction and the LEHR collimator. The images were obtained using the following gamma camera systems: GCA 9300A (Toshiba, Tokyo), E.CAM Signature (Toshiba/Siemens, Tokyo) and Varicam (GE, Tokyo). Cardiac phantom studies demonstrated that contamination of the H/M count ratio was greater with the LEHR collimator and least with the ME collimator. The corrected H/M ratio with the LEHR collimator was similar to that with ME collimators. The uncorrected H/M ratio with the ME collimator was linearly related to the H/M ratio with IDW correction with the LEHR collimator. The relationship between the uncorrected H/M ratios determined with the LEHR (E.CAM) and the ME collimators was y = 0.56x + 0.49, where y = H/M ratio with the E.CAM and x = H/M ratio with the ME collimator. The average normal values for the low-energy collimator (n=18) were 2.2±0.2 (initial H/M ratio) and 2.42±0.2 (delayed H/M ratio), and for the low/medium-energy (LME) collimator (n=14) were 2.63±0.25 (initial H/M ratio) and 2.87±0.19 (delayed H/M ratio). H/M ratios in previous clinical studies using LEHR collimators are comparable to those with ME collimators. Conclusion: The IDW-corrected H/M ratios determined with the LEHR collimator were similar to those determined with the ME collimator. This finding could make it possible to standardize the H/M ratio in planar imaging among various collimators in the clinical setting. © 2008 Springer-Verlag

    A series of ENU-induced single-base substitutions in a long-range cis-element altering Sonic hedgehog expression in the developing mouse limb bud

    Get PDF
    AbstractMammal–fish-conserved-sequence 1 (MFCS1) is a highly conserved sequence that acts as a limb-specific cis-acting regulator of Sonic hedgehog (Shh) expression, residing 1 Mb away from the Shh coding sequence in mouse. Using gene-driven screening of an ENU-mutagenized mouse archive, we obtained mice with three new point mutations in MFCS1: M101116, M101117, and M101192. Phenotype analysis revealed that M101116 mice exhibit preaxial polydactyly and ectopic Shh expression at the anterior margin of the limb buds like a previously identified mutant, M100081. In contrast, M101117 and M101192 show no marked abnormalities in limb morphology. Furthermore, transgenic analysis revealed that the M101116 and M100081 sequences drive ectopic reporter gene expression at the anterior margin of the limb bud, in addition to the normal posterior expression. Such ectopic expression was not observed in the embryos carrying a reporter transgene driven by M101117. These results suggest that M101116 and M100081 affect the negative regulatory activity of MFCS1, which suppresses anterior Shh expression in developing limb buds. Thus, this study shows that gene-driven screening for ENU-induced mutations is an effective approach for exploring the function of conserved, noncoding sequences and potential cis-regulatory elements

    Molybdenum Taper Dry Etching

    No full text

    Machine learning-based prediction of conversion coefficients for I-123 metaiodobenzylguanidine heart-to-mediastinum ratio

    No full text
    Purpose: We developed a method of standardizing the heart-to-mediastinal ratio in 123I-labeled meta-iodobenzylguanidine (MIBG) images using a conversion coefficient derived from a dedicated phantom. This study aimed to create a machine-learning (ML) model to estimate conversion coefficients without using a phantom. Methods: 210 Monte Carlo (MC) simulations of 123I-MIBG images to obtain conversion coefficients using collimators that differed in terms of hole diameter, septal thickness, and length. Simulated conversion coefficients and collimator parameters were prepared as training datasets, then a gradient-boosting ML was trained to estimate conversion coefficients from collimator parameters. Conversion coefficients derived by ML were compared with those that were MC simulated and experimentally derived from 613 phantom images. Results: Conversion coefficients were superior when estimated by ML compared with the classical multiple linear regression model (root mean square deviations: 0.021 and 0.059, respectively). The experimental, MC simulated, and ML-estimated conversion coefficients agreed, being, respectively, 0.54, 0.55, and 0.55 for the low-; 0.74, 0.70, and 0.72 for the low-middle; and 0.88, 0.88, and 0.88 for the medium-energy collimators. Conclusions: The ML model estimated conversion coefficients without the need for phantom experiments. This means that conversion coefficients were comparable when estimated based on collimator parameters and on experiments
    corecore