1,175 research outputs found
R&D project for neutrinoless double beta decay in Borexino
Since the proposal of the Borexino project in the early nineties, the idea to perform a neutrinoless double beta decay experiment with 136Xe dissolved in the scintillator was considered. The beautiful results obtained by the Borexino experiment, which achieved a purity far exceeding design goals, and a new concept for dissolving large quantities of xenon in the scintillator by increasing its pressure make this possibility even more interesting for a new-generation experiment in the next decade. We present the ongoing R&D studies to look for neutrinoless double
beta decay using liquid scintillators, discussing the optical properties of the Borexino scintillator when xenon is dissolved in large quantity and with high pressure
Diode power detector X‐parameters™ model extraction using LSNA‐based measurement system
A study is presented on the problems that may arise when characterising low frequency device behaviour with a large signal network analyser (LSNA)-based measurement system. A diode power detector has been measured and, for the first time, an X-parameters based detector model was extracted from measurements. Difficulties measuring the detector output voltage dependence with baseband impedances, especially when those impedances showed resonant effects, were observed and a method to overcome the problems encountered is presented. The measurement-based detector X-parameters model demonstrated its usefulness to predict power detector behaviour under two-tone excitations and complex loads.Ministerio de Ciencia e Innovación | Ref. TEC2011-29264-C03-03Ministerio de Ciencia e Innovación | Ref. TEC2008-06874-C03-0
Evidence For The Production Of Slow Antiprotonic Hydrogen In Vacuum
We present evidence showing how antiprotonic hydrogen, the quasistable
antiproton-proton (pbar-p) bound system, has been synthesized following the
interaction of antiprotons with the hydrogen molecular ion (H2+) in a nested
Penning trap environment. From a careful analysis of the spatial distributions
of antiproton annihilation events, evidence is presented for antiprotonic
hydrogen production with sub-eV kinetic energies in states around n=70, and
with low angular momenta. The slow antiprotonic hydrogen may be studied using
laser spectroscopic techniques.Comment: 5 pages with 4 figures. Published as Phys. Rev. Letters 97, 153401
(2006), in slightly different for
Detection of antihydrogen annihilations with a Si-micro-strip and pure CsI detector
In 2002, the ATHENA collaboration reported the creation and detection of cold
(~15 K) antihydrogen atoms [1]. The observation was based on the complete
reconstruction of antihydrogen annihilations, simultaneous and spatially
correlated annihilations of an antiproton and a positron. Annihilation
byproducts are measured with a cylindrically symmetric detector system
consisting of two layers of double sided Si-micro-strip modules that are
surrounded by 16 rows of 12 pure CsI crystals (13 x 17.5 x 17 mm^3). This paper
gives a brief overview of the experiment, the detector system, and event
reconstruction.
Reference 1. M. Amoretti et al., Nature 419, 456 (2002).Comment: 7 pages, 5 figures; Proceedings for the 8th ICATPP Conference on
Astroparticle, Particle, Space Physics, Detectors and Medical Physics
Applications (Como, Italy October 2003) to be published by World Scientific
(style file included
Positron plasma diagnostics and temperature control for antihydrogen production
Production of antihydrogen atoms by mixing antiprotons with a cold, confined,
positron plasma depends critically on parameters such as the plasma density and
temperature. We discuss non-destructive measurements, based on a novel,
real-time analysis of excited, low-order plasma modes, that provide
comprehensive characterization of the positron plasma in the ATHENA
antihydrogen apparatus. The plasma length, radius, density, and total particle
number are obtained. Measurement and control of plasma temperature variations,
and the application to antihydrogen production experiments are discussed.Comment: 5 pages, 4 figures, to be published in Phys. Rev. Let
AEGIS at CERN: Measuring Antihydrogen Fall
The main goal of the AEGIS experiment at the CERN Antiproton Decelerator is
the test of fundamental laws such as the Weak Equivalence Principle (WEP) and
CPT symmetry. In the first phase of AEGIS, a beam of antihydrogen will be
formed whose fall in the gravitational field is measured in a Moire'
deflectometer; this will constitute the first test of the WEP with antimatter.Comment: Presented at the Fifth Meeting on CPT and Lorentz Symmetry,
Bloomington, Indiana, June 28-July 2, 201
Solar neutrino detection in a large volume double-phase liquid argon experiment
Precision measurements of solar neutrinos emitted by specific nuclear
reaction chains in the Sun are of great interest for developing an improved
understanding of star formation and evolution. Given the expected neutrino
fluxes and known detection reactions, such measurements require detectors
capable of collecting neutrino-electron scattering data in exposures on the
order of 1 ktonne yr, with good energy resolution and extremely low background.
Two-phase liquid argon time projection chambers (LAr TPCs) are under
development for direct Dark Matter WIMP searches, which possess very large
sensitive mass, high scintillation light yield, good energy resolution, and
good spatial resolution in all three cartesian directions. While enabling Dark
Matter searches with sensitivity extending to the "neutrino floor" (given by
the rate of nuclear recoil events from solar neutrino coherent scattering),
such detectors could also enable precision measurements of solar neutrino
fluxes using the neutrino-electron elastic scattering events. Modeling results
are presented for the cosmogenic and radiogenic backgrounds affecting solar
neutrino detection in a 300 tonne (100 tonne fiducial) LAr TPC operating at
LNGS depth (3,800 meters of water equivalent). The results show that such a
detector could measure the CNO neutrino rate with ~15% precision, and
significantly improve the precision of the 7Be and pep neutrino rates compared
to the currently available results from the Borexino organic liquid
scintillator detector.Comment: 21 pages, 7 figures, 6 table
ATHENA -- First Production of Cold Antihydrogen and Beyond
Atomic systems of antiparticles are the laboratories of choice for tests of
CPT symmetry with antimatter. The ATHENA experiment was the first to report the
production of copious amounts of cold antihydrogen in 2002. This article
reviews some of the insights that have since been gained concerning the
antihydrogen production process as well as the external and internal properties
of the produced anti-atoms. Furthermore, the implications of those results on
future prospects of symmetry tests with antimatter are discussed.Comment: Proc. of the Third Meeting on CPT and Lorentz Symmetry, Bloomington
(Indiana), USA, August 2004, edited by V. A. Kostelecky (World Scientific,
Singapore). 10 pages, 5 figures, 1 table. Author affiliations cor
Cold-Antimatter Physics
The CPT theorem and the Weak Equivalence Principle are foundational
principles on which the standard description of the fundamental interactions is
based. The validity of such basic principles should be tested using the largest
possible sample of physical systems. Cold neutral antimatter (low-energy
antihydrogen atoms) could be a tool for testing the CPT symmetry with high
precision and for a direct measurement of the gravitational acceleration of
antimatter. After several years of experimental efforts, the production of
low-energy antihydrogen through the recombination of antiprotons and positrons
is a well-established experimental reality. An overview of the ATHENA
experiment at CERN will be given and the main experimental results on
antihydrogen formation will be reviewed.Comment: Proceedings of the XLIII International Meeting on Nuclear Physics,
Bormio (Italy), March 13-20 (2005). 10 pages, 4 figures, 1 tabl
- …