272 research outputs found

    Importance of Variant Interpretation in Whole-Exome Molecular Autopsy: Population-Based Case Series.

    Get PDF
    BACKGROUND: Potentially lethal cardiac channelopathies/cardiomyopathies may underlie a substantial portion of sudden unexplained death in the young (SUDY). The whole-exome molecular autopsy represents the latest approach to postmortem genetic testing for SUDY. However, proper variant adjudication in the setting of SUDY can be challenging. METHODS: From January 2012 through December 2013, 25 consecutive cases of SUDY from 1 to 40 years of age (average age at death 27±5.7 years; 13 white, 12 black) from Cook County, Illinois, were referred after a negative (n=16) or equivocal (n=9) conventional autopsy. A whole-exome molecular autopsy with analysis of 99 sudden death-susceptibility genes was performed. The predicted pathogenicity of ultrarare, nonsynonymous variants was determined using the American College of Medical Genetics guidelines. RESULTS: Overall, 27 ultrarare nonsynonymous variants were seen in 16/25 (64%) victims of SUDY. Among black individuals, 9/12 (75%) had an ultrarare nonsynonymous variant compared with 7/13 (54%) white individuals. Of the 27 variants, 10 were considered pathogenic or likely pathogenic in 7/25 (28%) individuals in accordance with the American College of Medical Genetics guidelines. Pathogenic/likely pathogenic variants were identified in 5/16 (31%) of autopsy-negative cases and in 2/6 (33%) victims of SUDY with equivocal findings of cardiomyopathy. Overall, 6 pathogenic/likely pathogenic variants in 4/25 (16%) cases were congruent with the phenotypic findings at autopsy and therefore considered clinically actionable. CONCLUSIONS: Whole-exome molecular autopsy with gene-specific surveillance is an effective approach for the detection of potential pathogenic variants in SUDY cases. However, systematic variant adjudication is crucial to ensure accurate and proper care for surviving family members

    Triadin Knockout Syndrome Is Absent in a Multi-Center Molecular Autopsy Cohort of Sudden Infant Death Syndrome and Sudden Unexplained Death in the Young and Is Extremely Rare in the General Population

    Get PDF
    Background: Triadin knockout syndrome (TKOS) is a potentially lethal arrhythmia disorder caused by recessively inherited null variants in TRDN-encoded cardiac triadin. Despite its malignant phenotype, the prevalence of TKOS in sudden infant death syndrome and sudden unexplained death in the young is unknown. Methods: Exome sequencing was performed on 599 sudden infant death syndrome and 258 sudden unexplained death in the young cases. Allele frequencies of all TRDN null variants identified in the cardiac-specific isoform of TRDN in the Genome Aggregation Database were used to determine the estimated prevalence and ethnic distribution of TKOS. Results: No triadin null individuals were identified in 599 sudden infant death syndrome and 258 sudden unexplained death in the young exomes. Using the Genome Aggregation Database, we estimate the overall prevalence of TKOS to be ≈1:22.7 million individuals. However, TKOS prevalence is 5.5-fold higher in those of African descent (≈1:4.1 million). Conclusions: TKOS is an exceedingly rare clinical entity that does not contribute meaningfully to either sudden infant death syndrome or sudden unexplained death in the young. However, despite its rarity and absence in large sudden death cohorts, TKOS remains a malignant and potentially lethal disorder which requires further research to better care for these patients

    Novel Characteristics of Valveless Pumping

    Get PDF
    This study investigates the occurrence of valveless pumping in a fluidfilled system consisting of two open tanks connected by an elastic tube. We show that directional flow can be achieved by introducing a periodic pinching applied at an asymmetrical location along the tube, and that the flow direction depends on the pumping frequency. We propose a relation between wave propagation velocity, tube length, and resonance frequencies associated with shifts in the pumping direction using numerical simulations. The eigenfrequencies of the system are estimated from the linearized system, and we show that these eigenfrequencies constitute the resonance frequencies and the horizontal slope frequencies of the system; 'horizontal slope frequency' being a new concept. A simple model is suggested, explaining the effect of the gravity driven part of the oscillation observed in response to the tank and tube diameter changes. Results are partly compared with experimental findings.Art. no. 22450

    Dysfunction of NaV1.4, a skeletal muscle voltage-gated sodium channel, in sudden infant death syndrome: a case-control study.

    Get PDF
    BACKGROUND: Sudden infant death syndrome (SIDS) is the leading cause of post-neonatal infant death in high-income countries. Central respiratory system dysfunction seems to contribute to these deaths. Excitation that drives contraction of skeletal respiratory muscles is controlled by the sodium channel NaV1.4, which is encoded by the gene SCN4A. Variants in NaV1.4 that directly alter skeletal muscle excitability can cause myotonia, periodic paralysis, congenital myopathy, and myasthenic syndrome. SCN4A variants have also been found in infants with life-threatening apnoea and laryngospasm. We therefore hypothesised that rare, functionally disruptive SCN4A variants might be over-represented in infants who died from SIDS. METHODS: We did a case-control study, including two consecutive cohorts that included 278 SIDS cases of European ancestry and 729 ethnically matched controls without a history of cardiovascular, respiratory, or neurological disease. We compared the frequency of rare variants in SCN4A between groups (minor allele frequency <0·00005 in the Exome Aggregation Consortium). We assessed biophysical characterisation of the variant channels using a heterologous expression system. FINDINGS: Four (1·4%) of the 278 infants in the SIDS cohort had a rare functionally disruptive SCN4A variant compared with none (0%) of 729 ethnically matched controls (p=0·0057). INTERPRETATION: Rare SCN4A variants that directly alter NaV1.4 function occur in infants who had died from SIDS. These variants are predicted to significantly alter muscle membrane excitability and compromise respiratory and laryngeal function. These findings indicate that dysfunction of muscle sodium channels is a potentially modifiable risk factor in a subset of infant sudden deaths. FUNDING: UK Medical Research Council, the Wellcome Trust, National Institute for Health Research, the British Heart Foundation, Biotronik, Cardiac Risk in the Young, Higher Education Funding Council for England, Dravet Syndrome UK, the Epilepsy Society, the Eunice Kennedy Shriver National Institute of Child Health & Human Development of the National Institutes of Health, and the Mayo Clinic Windland Smith Rice Comprehensive Sudden Cardiac Death Program

    Genetic modification for disease resistance: a position paper

    Get PDF
    This Position Paper was prepared by members of the Task Force on Global Food Security of the International Society for Plant Pathology. An objective approach is proposed to the assessment of the potential of genetic modification (GM) to reduce the impact of crop diseases. The addition of GM to the plant breeder’s conventional toolbox facilitates gene-by-gene introduction into breeding programmes of well defined characters, while also allowing access to genes from a greatly extended range of organisms. The current status of GM crops is outlined. GM could make an additional contribution to food security but its potential has been controversial, sometimes because of fixed views that GM is unnatural and risky. These have no factual basis: GM technology, where adopted, is widely regulated and no evidence has been reported of adverse consequences for human health. The potential benefits of GM could be particularly valuable for the developing world but there are numerous constraints. These include cost, inadequate seed supply systems, reluctance to adopt unfamiliar technology, concern about markets, inadequacy of local regulatory systems, mismatch between research and growers’ needs, and limited technical resources. The lower cost of new gene-editing methods should open the practice of GM beyond multinational corporations. As yet there are few examples of utilization of GM-based resistance to plant diseases. Two cases, papaya ringspot virus and banana xanthomonas wilt, are outlined. In the developing world there are many more potential cases whose progress is prevented by the absence of adequate biosafety regulation. It is concluded that there is untapped potential for using GM to introduce disease resistance. An objective approach to mobilizing this potential is recommended, to address the severe impact of plant disease on food security

    Loss-of-function of the Voltage-gated Sodium Channel NaV1.5 (Channelopathies) in Patients with Irritable Bowel Syndrome.

    Get PDF
    Background & Aims SCN5A encodes the α-subunit of the voltage-gated sodium channel NaV1.5. Many patients with cardiac arrhythmias caused by mutations in SCN5A also have symptoms of irritable bowel syndrome (IBS). We investigated whether patients with IBS have SCN5A variants that affect the function of NaV1.5. Methods We performed genotype analysis of SCN5A in 584 persons with IBS and 1380 without IBS (controls). Mutant forms of SCN5A were expressed in human embryonic kidney-293 cells, and functions were assessed by voltage clamp analysis. A genome-wide association study was analyzed for an association signal for the SCN5A gene, and replicated in 1745 patients in 4 independent cohorts of IBS patients and controls. Results Missense mutations were found in SCN5A in 13 of 584 patients (2.2%, probands). Diarrhea-predominant IBS was the most prevalent form of IBS in the overall study population (25%). However, a greater percentage of individuals with SCN5A mutations had constipation-predominant IBS (31%) than diarrhea-predominant IBS (10%; P <.05). Electrophysiologic analysis showed that 10 of 13 detected mutations disrupted NaV1.5 function (9 loss-of-function and 1 gain-of-function function). The p. A997T-NaV1.5 had the greatest effect in reducing NaV1.5 function. Incubation of cells that expressed this variant with mexiletine restored their sodium current and administration of mexiletine to 1 carrier of this mutation (who had constipation-predominant IBS) normalized their bowel habits. In the genome-wide association study and 4 replicated studies, the SCN5A locus was strongly associated with IBS. Conclusions About 2% of patients with IBS carry mutations in SCN5A. Most of these are loss-of-function mutations that disrupt Na V1.5 channel function. These findings provide a new pathogenic mechanism for IBS and possible treatment options

    Recurrent and Founder Mutations in the Netherlands: the Long-QT Syndrome

    Get PDF
    Background and objective The long-QT syndrome (LQTS) is associated with premature sudden cardiac deaths affecting whole families and is caused by mutations in genes encoding for cardiac proteins. When the same mutation is found in different families (recurrent mutations), this may imply either a common ancestor (founder) or multiple de novo mutations. We aimed to review recurrent mutations in patients with LQTS. Methods By use of our databases, we investigated the number of mutations that were found recurrently (at least three times) in LQT type 1-3 patients in the Netherlands. We studied familial links in the apparently unrelated probands, and we visualised the geographical distribution of these probands. Our results were compared with published literature of founder effects in LQTS outside the Netherlands. Results We counted 14 recurrent LQT mutations in the Netherlands. There are 326 identified carriers of one of these mutations. For three of these mutations, familial links were found between apparently unrelated probands. Conclusion Whereas true LQT founder mutations are described elsewhere in the world, we cannot yet demonstrate a real founder effect of these recurrent mutations in the Netherlands. Further studies on the prevalence of these mutations are indicated, and haplotype-sharing of the mutation carriers is pertinent to provide more evidence for founder mutation-based LQTS pathology in our countr

    Trafficking-Deficient G572R-hERG and E637K-hERG Activate Stress and Clearance Pathways in Endoplasmic Reticulum

    Get PDF
    Background: Long QT syndrome type 2 (LQT2) is the second most common type of all long QT syndromes. It is well-known that trafficking deficient mutant human ether-a-go-go-related gene (hERG) proteins are often involved in LQT2. Cells respond to misfolded and trafficking-deficient proteins by eliciting the unfolded protein response (UPR) and Activating Transcription Factor (ATF6) has been identified as a key regulator of the mammalian UPR. In this study, we investigated the role of ER chaperone proteins (Calnexin and Calreticulin) in the processing of G572R-hERG and E637K-hERG mutant proteins. Methods: pcDNA3-WT-hERG, pcDNA3-G572R-hERG and pcDNA3-E637K-hERG plasmids were transfected into U2OS and HEK293 cells. Confocal microscopy and western blotting were used to analyze subcellular localization and protein expression. Interaction between WT or mutant hERGs and Calnexin/Calreticulin was tested by coimmunoprecipitation. To assess the role of the ubiquitin proteasome pathway in the degradation of mutant hERG proteins, transfected HEK293 cells were treated with proteasome inhibitors and their effects on the steady state protein levels of WT and mutant hERGs were examined. Conclusion: Our results showed that levels of core-glycosylated immature forms of G572R-hERG and E637K-hERG in association with Calnexin and Calreticulin were higher than that in WT-hERG. Both mutant hERG proteins could activate the UPR by upregulating levels of active ATF6. Furthermore, proteasome inhibition increased the levels of core-glycosylated immature forms of WT and mutant hERGs. In addition, interaction between mutant hERGs and Calnexin/Calreticulin wa
    corecore