19 research outputs found

    The transcriptional repressor bs69 is a conserved target of the e1a proteins from several human adenovirus species

    Get PDF
    Early region 1A (E1A) is the first viral protein produced upon human adenovirus (HAdV) infection. This multifunctional protein transcriptionally activates other HAdV early genes and reprograms gene expression in host cells to support productive infection. E1A functions by interacting with key cellular regulatory proteins through short linear motifs (SLiMs). In this study, the molecular determinants of interaction between E1A and BS69, a cellular repressor that negatively regulates E1A transactivation, were systematically defined by mutagenesis experiments. We found that a minimal sequence comprised of MPNLVPEV, which contains a conserved PXLXP motif and spans residues 112–119 in HAdV-C5 E1A, was necessary and sufficient in binding to the myeloid, Nervy, and DEAF-1 (MYND) domain of BS69. Our study also identified residues P113 and L115 as critical for this interaction. Furthermore, the HAdV-C5 and-A12 E1A proteins from species C and A bound BS69, but those of HAdV-B3,-E4,-D9,-F40, and-G52 from species B, E, D, F, and G, respectively, did not. In addition, BS69 functioned as a repressor of E1A-mediated transactivation, but only for HAdV-C5 and HAdV-A12 E1A. Thus, the PXLXP motif present in a subset of HAdV E1A proteins confers interaction with BS69, which serves as a negative regulator of E1A mediated transcriptional activation

    Characterization and Discovery of Short Linear Motifs Mediating Protein Nuclear Import

    No full text
    Protein-protein interactions (PPI) mediated through short linear motifs (SLiMs) are ubiquitous throughout the human proteome and are involved in many essential cellular processes. One such type of SLiM is the classical nuclear localization sequence (cNLS), which facilitates nuclear import by binding importin-α (Imp-α). This pathway is indispensable to many cellular processes and is extensively used by viral proteins that function within the nucleus of infected cells. Based on this, I demonstrated that the classical nuclear import pathway inhibitor, ivermectin, can inhibit replication of human adenovirus. Treatment with ivermectin blocks nuclear localization of the E1A protein, an essential viral nuclear protein that functions early during infection. I also demonstrate, for the first time, that ivermectin inhibits the Imp-α/cNLS interaction. Interestingly though, despite the classical nuclear import pathway being extensively studied, up to 50% of Imp-α cargo in yeast do not have a cNLS, as one would expect. However, whether this is true with humans remained unclear. To address this, I used currently available databases and datasets for human Imp-α PPIs and computationally searched for cNLSs. Using my approach, I found that 20–50% of Imp-α interactors do not have predictable cNLS. Furthermore, I found that the majority of proteins in the Mediator complex associate with Imp-α without having a predictable cNLS. Based on these findings I hypothesized that components of Mediator are likely to be using a “piggybacking” mechanism. These findings also demonstrated a need for identifying piggybacking mechanisms and/or novel NLSs. To explore these questions, I developed a yeast-based genetic selection to identify peptides conferring nuclear import. This system uses a large recombinant protein to express randomly generated peptides that can be subsequently selected for based on their ability to facilitate nuclear import in yeast. Peptides that I identified in this selection were also able to localize EGFP to the nucleus and interact with Imp-α in human cells. This approach also represents a novel strategy to identify SLiMs in a high throughput fashion, an area of SLiM discovery that currently lacks high throughput experimental methods

    Reduced MHC Class I and II Expression in HPV−Negative vs. HPV−Positive Cervical Cancers

    No full text
    Cervical cancer (CC) is the second most common cancer in women worldwide and the fourth leading cause of cancer-associated death in women. Although human papillomavirus (HPV) infection is associated with nearly all CC, it has recently become clear that HPV−negative (HPV−) CC represents a distinct disease phenotype with increased mortality. HPV−positive (HPV+) and HPV− CC demonstrate different molecular pathology, prognosis, and response to treatment. Furthermore, CC caused by HPV α9 types (HPV16-like) often have better outcomes than those caused by HPV α7 types (HPV18-like). This study systematically and comprehensively compared the expression of genes involved in major histocompatibility complex (MHC) class I and II presentation within CC caused by HPV α9 types, HPV α7 types, and HPV− CC. We observed increased expression of MHC class I and II classical and non-classical genes in HPV+ CC and overall higher expression of genes involved in their antigen loading and presentation apparatus as well as transcriptional regulation. Increased expression of MHC I-related genes differs from previous studies using cell culture models. These findings identify crucial differences between antigen presentation within the tumor immune microenvironments of HPV+ and HPV− CC, as well as modest differences between HPV α9 and α7 CC. These differences may contribute to the altered patient outcomes and responses to immunotherapy observed between these distinct cancers

    Viral Appropriation: Laying Claim to Host Nuclear Transport Machinery

    No full text
    Protein nuclear transport is an integral process to many cellular pathways and often plays a critical role during viral infection. To overcome the barrier presented by the nuclear membrane and gain access to the nucleus, virally encoded proteins have evolved ways to appropriate components of the nuclear transport machinery. By binding karyopherins, or the nuclear pore complex, viral proteins influence their own transport as well as the transport of key cellular regulatory proteins. This review covers how viral proteins can interact with different components of the nuclear import machinery and how this influences viral replicative cycles. We also highlight the effects that viral perturbation of nuclear transport has on the infected host and how we can exploit viruses as tools to study novel mechanisms of protein nuclear import. Finally, we discuss the possibility that drugs targeting these transport pathways could be repurposed for treating viral infections

    High Levels of Class I Major Histocompatibility Complex mRNA Are Present in Epstein–Barr Virus-Associated Gastric Adenocarcinomas

    No full text
    Epstein–Barr virus (EBV) is responsible for approximately 9% of stomach adenocarcinomas. EBV-encoded microRNAs have been reported as reducing the function of the class I major histocompatibility complex (MHC-I) antigen presentation apparatus, which could allow infected cells to evade adaptive immune responses. Using data from nearly 400 human gastric carcinomas (GCs), we assessed the impact of EBV on MHC-I heavy and light chain mRNA levels, as well as multiple other components essential for antigen processing and presentation. Unexpectedly, mRNA levels of these genes were as high, or higher, in EBV-associated gastric carcinomas (EBVaGCs) compared to normal control tissues or other GC subtypes. This coordinated upregulation could have been a consequence of the higher intratumoral levels of interferon γ in EBVaGCs, which correlated with signatures of increased infiltration by T and natural killer (NK) cells. These results indicate that EBV-encoded products do not effectively reduce mRNA levels of the MHC-I antigen presentation apparatus in human GCs

    Hacking the Cell: Network Intrusion and Exploitation by Adenovirus E1A

    No full text
    As obligate intracellular parasites, viruses are dependent on their infected hosts for survival. Consequently, viruses are under enormous selective pressure to utilize available cellular components and processes to their own advantage. As most, if not all, cellular activities are regulated at some level via protein interactions, host protein interaction networks are particularly vulnerable to viral exploitation. Indeed, viral proteins frequently target highly connected “hub” proteins to “hack” the cellular network, defining the molecular basis for viral control over the host. This widespread and successful strategy of network intrusion and exploitation has evolved convergently among numerous genetically distinct viruses as a result of the endless evolutionary arms race between pathogens and hosts. Here we examine the means by which a particularly well-connected viral hub protein, human adenovirus E1A, compromises and exploits the vulnerabilities of eukaryotic protein interaction networks. Importantly, these interactions identify critical regulatory hubs in the human proteome and help define the molecular basis of their function

    The Transcriptional Repressor BS69 is a Conserved Target of the E1A Proteins from Several Human Adenovirus Species

    No full text
    Early region 1A (E1A) is the first viral protein produced upon human adenovirus (HAdV) infection. This multifunctional protein transcriptionally activates other HAdV early genes and reprograms gene expression in host cells to support productive infection. E1A functions by interacting with key cellular regulatory proteins through short linear motifs (SLiMs). In this study, the molecular determinants of interaction between E1A and BS69, a cellular repressor that negatively regulates E1A transactivation, were systematically defined by mutagenesis experiments. We found that a minimal sequence comprised of MPNLVPEV, which contains a conserved PXLXP motif and spans residues 112⁻119 in HAdV-C5 E1A, was necessary and sufficient in binding to the myeloid, Nervy, and DEAF-1 (MYND) domain of BS69. Our study also identified residues P113 and L115 as critical for this interaction. Furthermore, the HAdV-C5 and -A12 E1A proteins from species C and A bound BS69, but those of HAdV-B3, -E4, -D9, -F40, and -G52 from species B, E, D, F, and G, respectively, did not. In addition, BS69 functioned as a repressor of E1A-mediated transactivation, but only for HAdV-C5 and HAdV-A12 E1A. Thus, the PXLXP motif present in a subset of HAdV E1A proteins confers interaction with BS69, which serves as a negative regulator of E1A mediated transcriptional activation
    corecore