67 research outputs found

    Phase-space Lagrangian dynamics of incompressible thermofluids

    Full text link
    Phase-space Lagrangian dynamics in ideal fluids (i.e, continua) is usually related to the so-called {\it ideal tracer particles}. The latter, which can in principle be permitted to have arbitrary initial velocities, are understood as particles of infinitesimal size which do not produce significant perturbations of the fluid and do not interact among themselves. An unsolved theoretical problem is the correct definition of their dynamics in ideal fluids. The issue is relevant in order to exhibit the connection between fluid dynamics and the classical dynamical system, underlying a prescribed fluid system, which uniquely generates its time-evolution. \ The goal of this paper is to show that the tracer-particle dynamics can be {\it exactly} established for an arbitrary incompressible fluid uniquely based on the construction of an inverse kinetic theory (IKT) (Tessarotto \textit{et al.}, 2000-2008). As an example, the case of an incompressible Newtonian thermofluid is here considered.Comment: submitted to Physica

    Modelling of anthropogenic pollutant diffusion in the atmosphere and applications to civil protection monitoring

    Full text link
    A basic feature of fluid mechanics concerns the frictionless phase-space dynamics of particles in an incompressible fluid. The issue, besides its theoretical interest in turbulence theory, is important in many applications, such as the pollutant dynamics in the atmosphere, a problem relevant for civil protection monitoring of air quality. Actually, both the numerical simulation of the ABL (atmospheric boundary layer) portion of the atmosphere and that of pollutant dynamics may generally require the correct definition of the Lagrangian dynamics which characterizes arbitrary fluid elements of incompressible thermofluids. We claim that particularly important for applications would be to consider these trajectories as phase-space trajectories. This involves, however, the unfolding of a fundamental theoretical problem up to now substantially unsolved: {\it namely the determination of the exact frictionless dynamics of tracer particles in an incompressible fluid, treated either as a deterministic or a turbulent (i.e., stochastic) continuum.} In this paper we intend to formulate the necessary theoretical framework to construct such a type of description. This is based on a phase-space inverse kinetic theory (IKT) approach recently developed for incompressible fluids (Ellero \textit{et al.}, 2004-2008). {\it Our claim is that the conditional frictionless dynamics of a tracer particles - which corresponds to a prescribed velocity probability density and an arbitrary choice of the relevant fluid fields - can be exactly specified}.Comment: Contributed paper at RGD26 (Kyoto, Japan, July 2008

    Hamiltonian approach to GR - Part 1: covariant theory of classical gravity

    Full text link
    A challenging issue in General Relativity concerns the determination of the manifestly-covariant continuum Hamiltonian structure underlying the Einstein field equations and the related formulation of the corresponding covariant Hamilton-Jacobi theory. The task is achieved by adopting a synchronous variational principle requiring distinction between the prescribed deterministic metric tensor g^(r)≡{g^μν(r)}\widehat{g}(r)\equiv \left\{ \widehat{g}_{\mu \nu }(r)\right\} solution of the Einstein field equations which determines the geometry of the background space-time and suitable variational fields x≡{g,π}x\equiv \left\{ g,\pi \right\} obeying an appropriate set of continuum Hamilton equations, referred to here as GR-Hamilton equations.. It is shown that a prerequisite for reaching such a goal is that of casting the same equations in evolutionary form by means of a Lagrangian parametrization for a suitably-reduced canonical state. As a result, the corresponding Hamilton-Jacobi theory is established in manifestly-covariant form. Physical implications of the theory are discussed. These include the investigation of the structural stability of the GR-Hamilton equations with respect to vacuum solutions of the Einstein equations, assuming that wave-like perturbations are governed by the canonical evolution equations

    Hamiltonian approach to GR - Part 2: covariant theory of quantum gravity

    Full text link
    A non-perturbative quantum field theory of General Relativity is presented which leads to a new realization of the theory of Covariant Quantum-Gravity (CQG-theory). The treatment is founded on the recently-identified Hamiltonian structure associated with the classical space-time, i.e., the corresponding manifestly-covariant Hamilton equations and the related Hamilton-Jacobi theory. The quantum Hamiltonian operator and the CQG-wave equation for the corresponding CQG-state and wave-function are realized in % 4-scalar form. The new quantum wave equation is shown to be equivalent to a set of quantum hydrodynamic equations which warrant the consistency with the classical GR Hamilton-Jacobi equation in the semiclassical limit. A perturbative approximation scheme is developed, which permits the adoption of the harmonic oscillator approximation for the treatment of the Hamiltonian potential. As an application of the theory, the stationary vacuum CQG-wave equation is studied, yielding a stationary equation for the CQG-state in terms of the 4−4-scalar invariant-energy eigenvalue associated with the corresponding approximate quantum Hamiltonian operator. The conditions for the existence of a discrete invariant-energy spectrum are pointed out. This yields a possible estimate for the graviton mass together with a new interpretation about the quantum origin of the cosmological constant

    The computational complexity of traditional Lattice-Boltzmann methods for incompressible fluids

    Full text link
    It is well-known that in fluid dynamics an alternative to customary direct solution methods (based on the discretization of the fluid fields) is provided by so-called \emph{particle simulation methods}. Particle simulation methods rely typically on appropriate \emph{kinetic models} for the fluid equations which permit the evaluation of the fluid fields in terms of suitable expectation values (or \emph{momenta}) of the kinetic distribution function f(r,v,t),f(\mathbf{r,v},t), being respectively r\mathbf{r} and\textbf{\}v\mathbf{v} the position an velocity of a test particle with probability density f(r,v,t)f(\mathbf{r,v},t). These kinetic models can be continuous or discrete in phase space, yielding respectively \emph{continuous} or \emph{discrete kinetic models} for the fluids. However, also particle simulation methods may be biased by an undesirable computational complexity. In particular, a fundamental issue is to estimate the algorithmic complexity of numerical simulations based on traditional LBM's (Lattice-Boltzmann methods; for review see Succi, 2001 \cite{Succi}). These methods, based on a discrete kinetic approach, represent currently an interesting alternative to direct solution methods. Here we intend to prove that for incompressible fluids fluids LBM's may present a high complexity. The goal of the investigation is to present a detailed account of the origin of the various complexity sources appearing in customary LBM's. The result is relevant to establish possible strategies for improving the numerical efficiency of existing numerical methods.Comment: Contributed paper at RGD26 (Kyoto, Japan, July 2008

    Theory of stochastic transitions in area preserving maps

    Full text link
    A famous aspect of discrete dynamical systems defined by area-preserving maps is the physical interpretation of stochastic transitions occurring locally which manifest themselves through the destruction of invariant KAM curves and the local or global onset of chaos. Despite numerous previous investigations (see in particular Chirikov, Greene, Percival, Escande and Doveil and MacKay) based on different approaches, several aspects of the phenomenon still escape a complete understanding and a rigorous description. In particular Greene's approach is based on several conjectures, one of which is that the stochastic transition leading to the destruction of the last KAM curve in the standard map is due the linear destabilization of the elliptic points belonging to a peculiar family of invariants sets {I(m,n)} (rational iterates) having rational winding numbers and associated to the last KAM curve. Purpose of this work is to analyze the nonlinear phenomena leading to the stochastic transition in the standard map and their effect on the destabilization of the invariant sets associated to the KAM curves, leading, ultimately, to the destruction of the KAM curves themselves.Comment: 6 pages, 1 figure. Contributed to the Proceedings of the 24th International Symposium on Rarefied Gas Dynamics, July 10-16, 2004 Porto Giardino Monopoli (Bari), Ital
    • …
    corecore