5 research outputs found

    A comparative study of beam design curves against lateral torsional buckling using AISC, EC and SP

    Get PDF
    Introduction. Structural stability is an essential part of design process for steel structures and checking the overall stability is very important for the determination of the optimum steel beams section. Lateral torsional buckling (LTB) normally associated with beams subject to vertical loading, buckling out of the plane of the applied loads and it is a primary consideration in the design of steel structures, consequently it may reduce the load currying capacity. Methods. There are several national codes to verify the steel beam against LTB. All specifications have different approach for the treatment of LTB and this paper is concentrated on three different methods: America Institute of Steel Construction (AISC), Eurocode (EC) and Russian Code (SP). The attention is focused to the methods of developing LTB curves and their characteristics. Results. AISC specification identifies three regimes of buckling depending on the unbraced length of the member ( Lb ). However, EC and SP utilize a reduction factor (Ο‡ LT ) to treat lateral torsional buckling problem. In general, flexural capacities according to AISC are higher than those of EC and SP for non-compact sections

    Effect of using 3D-printed shell structure for reinforcement of ultra-high-performance concrete

    Get PDF
    This study aims to investigate the effect of 3D-printed polymer shell reinforcemen ton ultra-high-performance concrete. The mechanical properties of ultra-high-performance polymer reinforced concrete have been investigated. At first, the 3D-printed shell reinforcements were designed using 3D Max and Rhino 6 software. Then, each was fabricated through the fused deposition modeling method and positioned into the cubic, cylindrical, and prismatic molds. In the next step, the prepared Ultra-High-Performance Concrete mixture was poured into the molds, and the samples were cured for 28 days. Finally, the compressive, tensile, and flexural strength tests were carried out on the samples. The results indicated that the compressive, tensile, and flexural strengths of reinforced samples were lower than that of the unreinforced ones, respectively. Although including 3D-printed reinforcement decreased the mechanical properties of the Ultra-High-Performance Concrete samples, it changed the fracture mechanism of concrete from brittle to ductile

    Effect of gelatin powder, almond shell, and recycled aggregates on chemical and mechanical properties of conventional concrete

    Get PDF
    The objective of the research is to study the effect of different additives on the conventional concrete. In this term, three types of materials have been added to the concrete: gelatin powder as the binder, recycled aggregates, and almond shell as the fine and coarse aggregates. Several experiments have been made tΠΎ determine physical and mechanical properties, such as test for compressive and tensile strengths, for impact loading strength, durability test (water absorption) and deep penetration tests. Moreover, the microstructure results for the new type of concrete have been studied by means of scanning electron microscopy (SEM) and energy-dispersive x-ray spectroscopy (EDXS). The results show that when 70 kg of gelatin powder is added to 1 m3 of concrete, the concrete’s compressive strength and tensile strength are improved more than 22%; during impact loading the first and ultimate cracks are 11 and 129 by numbers, and the first and ultimate cracks’ strength is more than 223 and 2346 J respectively. The durability of sample from concrete with additional gelatin has been improved. SEM results illustrate that the weakness of almond shell concrete is related to cracks and voids between the cement matrix and almond shell. The voids of gelatin concrete are higher than that of conventional concrete. The conventional concrete has smooth crystals, and gelatin concrete has sharp and cubic crystals. EDXS results show that chemical content of these two types of concrete is different: conventional concrete contains silicon, while EDXS results show that chemical content of these two types of concrete is different: conventional concrete contains silicon, while gelatin concrete contains calcium and also C-S-H gel is generated in it

    Π­ΠΊΡΠΏΠ΅Ρ€ΠΈΠΌΠ΅Π½Ρ‚Π°Π»ΡŒΠ½ΠΎΠ΅ ΠΈ числСнноС исслСдованиС тонкостСнных Π±Π°Π»ΠΎΠΊ Π΄Π²ΡƒΡ‚Π°Π²Ρ€ΠΎΠ²ΠΎΠ³ΠΎ сСчСния ΠΏΡ€ΠΈ ΠΈΠ·Π³ΠΈΠ±Π΅ ΠΈ ΠΊΡ€ΡƒΡ‡Π΅Π½ΠΈΠΈ

    Get PDF
    The aim of the research - to investigate the behavior of thin-walled beam I-section loaded with bending and torsion using theoretical, numerical, and experimental approaches. In this paper, the main criteria for consideration of the different methods of analysis is the geometric characteristic of the section. The results obtained by the finite element method, the numerical method, as well as experimental data are compared. The analysis by finite element method by considering an additional degree of freedom at a node to include the restrained torsion and the dimension of the stiffness matrix is thus 14Γ—14. The results of the calculation according to this theory are compared with the numerical solution obtained using finite element software, and with the results of the experiment. The I-beam section subject to bending with torsion is considered. The deformations, strain, and stress distributions of open thin-walled structures subjected to bending and torsion are presented using experimental methods. The comparative results for the angle of twisting, deformations, and normal stresses in the frame element subjected to combined loading are displayed graphically. To evaluate the results, a theoretical, numerical, and experimental investigation of I-beam behavior under bending and restrained torsion was carried out. As a result of the comparison, it was revealed that the results obtained according to the refined theory proposed by the authors have good convergence with experimental data and are also quite close to the values obtained using commercial software.ЦСль Ρ€Π°Π±ΠΎΡ‚Ρ‹ - ΠΈΡΡΠ»Π΅Π΄ΠΎΠ²Π°Ρ‚ΡŒ ΠΏΠΎΠ²Π΅Π΄Π΅Π½ΠΈΠ΅ тонкостСнной Π±Π°Π»ΠΊΠΈ I сСчСния, Π½Π°Π³Ρ€ΡƒΠΆΠ΅Π½Π½ΠΎΠΉ ΠΈΠ·Π³ΠΈΠ±ΠΎΠΌ ΠΈ ΠΊΡ€ΡƒΡ‡Π΅Π½ΠΈΠ΅ΠΌ, ΠΈΡΠΏΠΎΠ»ΡŒΠ·ΡƒΡ тСорСтичСскиС, числСнныС ΠΈ ΡΠΊΡΠΏΠ΅Ρ€ΠΈΠΌΠ΅Π½Ρ‚Π°Π»ΡŒΠ½Ρ‹Π΅ ΠΏΠΎΠ΄Ρ…ΠΎΠ΄Ρ‹. Π’ Π΄Π°Π½Π½ΠΎΠΉ Ρ€Π°Π±ΠΎΡ‚Π΅ основным ΠΊΡ€ΠΈΡ‚Π΅Ρ€ΠΈΠ΅ΠΌ для рассмотрСния Ρ€Π°Π·Π»ΠΈΡ‡Π½Ρ‹Ρ… ΠΌΠ΅Ρ‚ΠΎΠ΄ΠΎΠ² Π°Π½Π°Π»ΠΈΠ·Π° являСтся гСомСтричСская характСристика сСчСния. Π‘Ρ€Π°Π²Π½ΠΈΠ²Π°ΡŽΡ‚ΡΡ Ρ€Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚Ρ‹, ΠΏΠΎΠ»ΡƒΡ‡Π΅Π½Π½Ρ‹Π΅ ΠΌΠ΅Ρ‚ΠΎΠ΄ΠΎΠΌ ΠΊΠΎΠ½Π΅Ρ‡Π½Ρ‹Ρ… элСмСнтов, числСнным ΠΌΠ΅Ρ‚ΠΎΠ΄ΠΎΠΌ, Π° Ρ‚Π°ΠΊΠΆΠ΅ ΡΠΊΡΠΏΠ΅Ρ€ΠΈΠΌΠ΅Π½Ρ‚Π°Π»ΡŒΠ½Ρ‹Π΅ Π΄Π°Π½Π½Ρ‹Π΅. ΠŸΡ€ΠΈ Π°Π½Π°Π»ΠΈΠ·Π΅ ΠΌΠ΅Ρ‚ΠΎΠ΄ΠΎΠΌ ΠΊΠΎΠ½Π΅Ρ‡Π½Ρ‹Ρ… элСмСнтов учитываСтся Π΄ΠΎΠΏΠΎΠ»Π½ΠΈΡ‚Π΅Π»ΡŒΠ½Π°Ρ ΡΡ‚Π΅ΠΏΠ΅Π½ΡŒ свободы Π² ΡƒΠ·Π»Π΅ для Π²ΠΊΠ»ΡŽΡ‡Π΅Π½ΠΈΡ ΠΏΠΎΠ²Ρ‚ΠΎΡ€Π½ΠΎ Π΄Π΅Ρ„ΠΎΡ€ΠΌΠΈΡ€ΠΎΠ²Π°Π½Π½ΠΎΠ³ΠΎ кручСния, Ρ‚Π°ΠΊΠΈΠΌ ΠΎΠ±Ρ€Π°Π·ΠΎΠΌ, Ρ€Π°Π·ΠΌΠ΅Ρ€Π½ΠΎΡΡ‚ΡŒ ΠΌΠ°Ρ‚Ρ€ΠΈΡ†Ρ‹ ТСсткости составляСт 14Γ—14. Π Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚Ρ‹ расчСта ΠΏΠΎ Π΄Π°Π½Π½ΠΎΠΉ Ρ‚Π΅ΠΎΡ€ΠΈΠΈ ΡΡ€Π°Π²Π½ΠΈΠ²Π°ΡŽΡ‚ΡΡ с числСнным Ρ€Π΅ΡˆΠ΅Π½ΠΈΠ΅ΠΌ, ΠΏΠΎΠ»ΡƒΡ‡Π΅Π½Π½Ρ‹ΠΌ с ΠΏΠΎΠΌΠΎΡ‰ΡŒΡŽ ΠΏΡ€ΠΎΠ³Ρ€Π°ΠΌΠΌΡ‹ ΠΊΠΎΠ½Π΅Ρ‡Π½Ρ‹Ρ… элСмСнтов, ΠΈ с Ρ€Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚Π°ΠΌΠΈ экспСримСнта. РассматриваСтся Π΄Π²ΡƒΡ‚Π°Π²Ρ€ΠΎΠ²ΠΎΠ΅ сСчСниС Π±Π°Π»ΠΊΠΈ, ΠΏΠΎΠ΄Π²Π΅Ρ€ΠΆΠ΅Π½Π½ΠΎΠΉ ΠΈΠ·Π³ΠΈΠ±Ρƒ с ΠΊΡ€ΡƒΡ‡Π΅Π½ΠΈΠ΅ΠΌ. ΠŸΡ€Π΅Π΄ΡΡ‚Π°Π²Π»Π΅Π½Ρ‹ Π΄Π΅Ρ„ΠΎΡ€ΠΌΠ°Ρ†ΠΈΠΈ, напряТСния ΠΈ распрСдСлСния напряТСний ΠΎΡ‚ΠΊΡ€Ρ‹Ρ‚Ρ‹Ρ… тонкостСнных конструкций, ΠΏΠΎΠ΄Π²Π΅Ρ€ΠΆΠ΅Π½Π½Ρ‹Ρ… ΠΈΠ·Π³ΠΈΠ±Ρƒ ΠΈ ΠΊΡ€ΡƒΡ‡Π΅Π½ΠΈΡŽ, с использованиСм ΡΠΊΡΠΏΠ΅Ρ€ΠΈΠΌΠ΅Π½Ρ‚Π°Π»ΡŒΠ½Ρ‹Ρ… ΠΌΠ΅Ρ‚ΠΎΠ΄ΠΎΠ². Π‘Ρ€Π°Π²Π½ΠΈΡ‚Π΅Π»ΡŒΠ½Ρ‹Π΅ Ρ€Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚Ρ‹ для ΡƒΠ³Π»Π° закручивания, Π΄Π΅Ρ„ΠΎΡ€ΠΌΠ°Ρ†ΠΈΠΉ ΠΈ Π½ΠΎΡ€ΠΌΠ°Π»ΡŒΠ½Ρ‹Ρ… напряТСний Π² элСмСнтС Ρ€Π°ΠΌΡ‹, ΠΏΠΎΠ΄Π²Π΅Ρ€Π³Π½ΡƒΡ‚ΠΎΠΌ ΠΊΠΎΠΌΠ±ΠΈΠ½ΠΈΡ€ΠΎΠ²Π°Π½Π½ΠΎΠΌΡƒ Π½Π°Π³Ρ€ΡƒΠΆΠ΅Π½ΠΈΡŽ, ΠΎΡ‚ΠΎΠ±Ρ€Π°ΠΆΠ΅Π½Ρ‹ графичСски. Для ΠΎΡ†Π΅Π½ΠΊΠΈ ΠΏΠΎΠ»ΡƒΡ‡Π΅Π½Π½Ρ‹Ρ… Ρ€Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚ΠΎΠ² ΠΏΡ€ΠΎΠ²Π΅Π΄Π΅Π½ΠΎ Ρ‚Π΅ΠΎΡ€Π΅Ρ‚ΠΈΠΊΠΎ-ΠΊΠ°Π»ΡŒΠΊΡƒΠ»ΡΡ†ΠΈΠΎΠ½Π½ΠΎΠ΅, числСнноС ΠΈ ΡΠΊΡΠΏΠ΅Ρ€ΠΈΠΌΠ΅Π½Ρ‚Π°Π»ΡŒΠ½ΠΎΠ΅ исслСдованиС повСдСния Π΄Π²ΡƒΡ‚Π°Π²Ρ€ΠΎΠ²ΠΎΠΉ Π±Π°Π»ΠΊΠΈ ΠΏΡ€ΠΈ ΠΈΠ·Π³ΠΈΠ±Π΅ ΠΈ ΠΎΠ³Ρ€Π°Π½ΠΈΡ‡Π΅Π½Π½ΠΎΠΌ ΠΊΡ€ΡƒΡ‡Π΅Π½ΠΈΠΈ. ВыявлСно, Ρ‡Ρ‚ΠΎ Ρ€Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚Ρ‹, ΠΏΠΎΠ»ΡƒΡ‡Π΅Π½Π½Ρ‹Π΅ Π² соотвСтствии с ΠΏΡ€Π΅Π΄Π»ΠΎΠΆΠ΅Π½Π½ΠΎΠΉ Π°Π²Ρ‚ΠΎΡ€Π°ΠΌΠΈ ΡƒΡ‚ΠΎΡ‡Π½Π΅Π½Π½ΠΎΠΉ Ρ‚Π΅ΠΎΡ€ΠΈΠ΅ΠΉ, ΠΈΠΌΠ΅ΡŽΡ‚ Ρ…ΠΎΡ€ΠΎΡˆΡƒΡŽ ΡΡ…ΠΎΠ΄ΠΈΠΌΠΎΡΡ‚ΡŒ с ΡΠΊΡΠΏΠ΅Ρ€ΠΈΠΌΠ΅Π½Ρ‚Π°Π»ΡŒΠ½Ρ‹ΠΌΠΈ Π΄Π°Π½Π½Ρ‹ΠΌΠΈ ΠΈ достаточно Π±Π»ΠΈΠ·ΠΊΠΈ ΠΊ значСниям, ΠΏΠΎΠ»ΡƒΡ‡Π΅Π½Π½Ρ‹ΠΌ с ΠΏΠΎΠΌΠΎΡ‰ΡŒΡŽ коммСрчСского ΠΏΡ€ΠΎΠ³Ρ€Π°ΠΌΠΌΠ½ΠΎΠ³ΠΎ обСспСчСния

    ВлияниС ΠΏΠΎΡ€ΠΎΡˆΠΊΠ° ΠΆΠ΅Π»Π°Ρ‚ΠΈΠ½Π°, миндальной скорлупы ΠΈ Π²Ρ‚ΠΎΡ€ΠΈΡ‡Π½Ρ‹Ρ… Π·Π°ΠΏΠΎΠ»Π½ΠΈΡ‚Π΅Π»Π΅ΠΉ Π½Π° химичСскиС ΠΈ мСханичСскиС свойства ΠΎΠ±Ρ‹Ρ‡Π½ΠΎΠ³ΠΎ Π±Π΅Ρ‚ΠΎΠ½Π°

    Get PDF
    The objective of the research is to study the effect of different additives on the conventional concrete. In this term, three types of materials have been added to the concrete: gelatin powder as the binder, recycled aggregates, and almond shell as the fine and coarse aggregates. Several experiments have been made tΠΎ determine physical and mechanical properties, such as test for compressive and tensile strengths, for impact loading strength, durability test (water absorption) and deep penetration tests. Moreover, the microstructure results for the new type of concrete have been studied by means of scanning electron microscopy (SEM) and energy-dispersive x-ray spectroscopy (EDXS). The results show that when 70 kg of gelatin powder is added to 1 m3 of concrete, the concrete’s compressive strength and tensile strength are improved more than 22%; during impact loading the first and ultimate cracks are 11 and 129 by numbers, and the first and ultimate cracks’ strength is more than 223 and 2346 J respectively. The durability of sample from concrete with additional gelatin has been improved. SEM results illustrate that the weakness of almond shell concrete is related to cracks and voids between the cement matrix and almond shell. The voids of gelatin concrete are higher than that of conventional concrete. The conventional concrete has smooth crystals, and gelatin concrete has sharp and cubic crystals. EDXS results show that chemical content of these two types of concrete is different: conventional concrete contains silicon, while EDXS results show that chemical content of these two types of concrete is different: conventional concrete contains silicon, while gelatin concrete contains calcium and also C-S-H gel is generated in it.ЦСль исслСдования - ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ влияниС Ρ€Π°Π·Π»ΠΈΡ‡Π½Ρ‹Ρ… Π΄ΠΎΠ±Π°Π²ΠΎΠΊ Π½Π° свойства ΠΎΠ±Ρ‹Ρ‡Π½ΠΎΠ³ΠΎ Π±Π΅Ρ‚ΠΎΠ½Π°. Π’ Π±Π΅Ρ‚ΠΎΠ½Π½ΡƒΡŽ смСсь внСсСны Ρ‚Ρ€ΠΈ Π²ΠΈΠ΄Π° Π΄ΠΎΠ±Π°Π²ΠΎΠΊ: ΠΆΠ΅Π»Π°Ρ‚ΠΈΠ½ΠΎΠ²Ρ‹ΠΉ ΠΏΠΎΡ€ΠΎΡˆΠΎΠΊ Π² качСствС ΡΠ²ΡΠ·ΡƒΡŽΡ‰Π΅Π³ΠΎ, Π²Ρ‚ΠΎΡ€ΠΈΡ‡Π½Ρ‹Π΅ Π·Π°ΠΏΠΎΠ»Π½ΠΈΡ‚Π΅Π»ΠΈ ΠΈ миндальная скорлупа Π² качСствС ΠΌΠ΅Π»ΠΊΠΎΠ³ΠΎ ΠΈ ΠΊΡ€ΡƒΠΏΠ½ΠΎΠ³ΠΎ Π·Π°ΠΏΠΎΠ»Π½ΠΈΡ‚Π΅Π»Π΅ΠΉ. ΠŸΡ€ΠΎΠ²Π΅Π΄Π΅Π½ΠΎ исслСдованиС ΠΏΠΎ ΠΎΠΏΡ€Π΅Π΄Π΅Π»Π΅Π½ΠΈΡŽ Ρ„ΠΈΠ·ΠΈΠΊΠΎ-мСханичСских свойств Π±Π΅Ρ‚ΠΎΠ½Π° с ΡƒΠΊΠ°Π·Π°Π½Π½Ρ‹ΠΌΠΈ Π΄ΠΎΠ±Π°Π²ΠΊΠ°ΠΌΠΈ: прочности Π½Π° сТатиС ΠΈ растяТСниС, испытания Π½Π° ΡƒΠ΄Π°Ρ€Π½ΡƒΡŽ Π½Π°Π³Ρ€ΡƒΠ·ΠΊΡƒ, Π½Π° Π΄ΠΎΠ»Π³ΠΎΠ²Π΅Ρ‡Π½ΠΎΡΡ‚ΡŒ (Π²ΠΎΠ΄ΠΎΠΏΠΎΠ³Π»ΠΎΡ‰Π΅Π½ΠΈΠ΅) ΠΈ Π½Π° Π³Π»ΡƒΠ±ΠΈΠ½Ρƒ проникновСния Π²Π»Π°Π³ΠΈ Π² Π±Π΅Ρ‚ΠΎΠ½. ΠœΠΈΠΊΡ€ΠΎΡΡ‚Ρ€ΡƒΠΊΡ‚ΡƒΡ€Π° Π±Π΅Ρ‚ΠΎΠ½Π° ΠΈΠ·ΡƒΡ‡Π΅Π½Π° с ΠΏΠΎΠΌΠΎΡ‰ΡŒΡŽ ΡΠΊΠ°Π½ΠΈΡ€ΡƒΡŽΡ‰Π΅ΠΉ элСктронной микроскопии (SEM) ΠΈ энСргодиспСрсионной рСнтгСновской спСктроскопии (EDXS). УстановлСно, Ρ‡Ρ‚ΠΎ ΠΏΡ€ΠΈ Π΄ΠΎΠ±Π°Π²Π»Π΅Π½ΠΈΠΈ 70 ΠΊΠ³ ΠΆΠ΅Π»Π°Ρ‚ΠΈΠ½ΠΎΠ²ΠΎΠ³ΠΎ ΠΏΠΎΡ€ΠΎΡˆΠΊΠ° Π½Π° 1 ΠΌ3 Π±Π΅Ρ‚ΠΎΠ½Π° Π΅Π³ΠΎ ΠΏΡ€ΠΎΡ‡Π½ΠΎΡΡ‚ΡŒ Π½Π° сТатиС ΠΈ растяТСниС ΡƒΠ²Π΅Π»ΠΈΡ‡ΠΈΠ»Π°ΡΡŒ Π±ΠΎΠ»Π΅Π΅ Ρ‡Π΅ΠΌ Π½Π° 22 %; ΠΏΠΎΠ΄ дСйствиСм ΡƒΠ΄Π°Ρ€Π½ΠΎΠΉ Π½Π°Π³Ρ€ΡƒΠ·ΠΊΠΈ Π½Π°Ρ‡Π°Π»ΡŒΠ½ΠΎΠ΅ ΠΈ ΠΏΡ€Π΅Π΄Π΅Π»ΡŒΠ½ΠΎΠ΅ количСство Ρ‚Ρ€Π΅Ρ‰ΠΈΠ½ составляСт 11 ΠΈ 129, Π° Π½Π°Ρ‡Π°Π»ΡŒΠ½Π°Ρ ΠΈ ΠΏΡ€Π΅Π΄Π΅Π»ΡŒΠ½Π°Ρ ΠΏΡ€ΠΎΡ‡Π½ΠΎΡΡ‚ΡŒ трСщинообразования - Π±ΠΎΠ»Π΅Π΅ 223 ΠΈ 2346 Π”ΠΆ соотвСтствСнно. ΠšΡ€ΠΎΠΌΠ΅ Ρ‚ΠΎΠ³ΠΎ, ΠΏΠΎΠΊΠ°Π·Π°Ρ‚Π΅Π»ΠΈ долговСчности Π»ΡƒΡ‡ΡˆΠ΅ Ρƒ Π±Π΅Ρ‚ΠΎΠ½Π° с Π΄ΠΎΠ±Π°Π²Π»Π΅Π½ΠΈΠ΅ΠΌ ΠΆΠ΅Π»Π°Ρ‚ΠΈΠ½Π°. Π Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚Ρ‹, ΠΏΠΎΠ»ΡƒΡ‡Π΅Π½Π½Ρ‹Π΅ ΠΏΡ€ΠΈ ΠΏΠΎΠΌΠΎΡ‰ΠΈ SEM, Π΄Π΅ΠΌΠΎΠ½ΡΡ‚Ρ€ΠΈΡ€ΡƒΡŽΡ‚, Ρ‡Ρ‚ΠΎ пониТСнная ΠΏΡ€ΠΎΡ‡Π½ΠΎΡΡ‚ΡŒ Π±Π΅Ρ‚ΠΎΠ½Π° с Π΄ΠΎΠ±Π°Π²Π»Π΅Π½ΠΈΠ΅ΠΌ миндальной скорлупы связана с Ρ‚Ρ€Π΅Ρ‰ΠΈΠ½Π°ΠΌΠΈ ΠΈ пустотами ΠΌΠ΅ΠΆΠ΄Ρƒ Ρ†Π΅ΠΌΠ΅Π½Ρ‚Π½ΠΎΠΉ ΠΌΠ°Ρ‚Ρ€ΠΈΡ†Π΅ΠΉ ΠΈ миндальной скорлупой. ΠŸΡƒΡΡ‚ΠΎΡ‚Ρ‹ Π² Π±Π΅Ρ‚ΠΎΠ½Π΅ с ΠΆΠ΅Π»Π°Ρ‚ΠΈΠ½ΠΎΠΌ Π²Ρ‹ΡˆΠ΅, Ρ‡Π΅ΠΌ Π² ΠΎΠ±Ρ‹Ρ‡Π½ΠΎΠΌ Π±Π΅Ρ‚ΠΎΠ½Π΅. Π‘Ρ‚Ρ€ΡƒΠΊΡ‚ΡƒΡ€Π° ΠΎΠ±Ρ‹Ρ‡Π½ΠΎΠ³ΠΎ Π±Π΅Ρ‚ΠΎΠ½Π° ΠΈΠΌΠ΅Π΅Ρ‚ Π²ΠΈΠ΄ Π³Π»Π°Π΄ΠΊΠΈΡ… кристаллов, Π° Π±Π΅Ρ‚ΠΎΠ½Π° с ΠΆΠ΅Π»Π°Ρ‚ΠΈΠ½ΠΎΠΌ - острыС ΠΈ кубичСскиС кристаллы. Π Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚Ρ‹, ΠΏΠΎΠ»ΡƒΡ‡Π΅Π½Π½Ρ‹Π΅ с ΠΏΠΎΠΌΠΎΡ‰ΡŒΡŽ EDXS, ΠΏΠΎΠΊΠ°Π·Π°Π»ΠΈ Ρ€Π°Π·Π»ΠΈΡ‡ΠΈΠ΅ Π² химичСском составС: ΠΎΠ±Ρ‹Ρ‡Π½Ρ‹ΠΉ Π±Π΅Ρ‚ΠΎΠ½ содСрТит ΠΊΡ€Π΅ΠΌΠ½ΠΈΠΉ, Ρ‚ΠΎΠ³Π΄Π° ΠΊΠ°ΠΊ Π±Π΅Ρ‚ΠΎΠ½ с Π΄ΠΎΠ±Π°Π²ΠΊΠΎΠΉ ΠΆΠ΅Π»Π°Ρ‚ΠΈΠ½Π° Π² Π²Ρ‹ΡˆΠ΅ΡƒΠΊΠ°Π·Π°Π½Π½Ρ‹Ρ… пропорциях содСрТит ΠΊΠ°Π»ΡŒΡ†ΠΈΠΉ ΠΈ Π² Π½Π΅ΠΌ образуСтся гСль C-S-H
    corecore