5 research outputs found
A comparative study of beam design curves against lateral torsional buckling using AISC, EC and SP
Introduction. Structural stability is an essential part of design process for steel structures and checking the overall stability is very important for the determination of the optimum steel beams section. Lateral torsional buckling (LTB) normally associated with beams subject to vertical loading, buckling out of the plane of the applied loads and it is a primary consideration in the design of steel structures, consequently it may reduce the load currying capacity. Methods. There are several national codes to verify the steel beam against LTB. All specifications have different approach for the treatment of LTB and this paper is concentrated on three different methods: America Institute of Steel Construction (AISC), Eurocode (EC) and Russian Code (SP). The attention is focused to the methods of developing LTB curves and their characteristics. Results. AISC specification identifies three regimes of buckling depending on the unbraced length of the member ( Lb ). However, EC and SP utilize a reduction factor (Ο LT ) to treat lateral torsional buckling problem. In general, flexural capacities according to AISC are higher than those of EC and SP for non-compact sections
Effect of using 3D-printed shell structure for reinforcement of ultra-high-performance concrete
This study aims to investigate the effect of 3D-printed polymer shell reinforcemen ton ultra-high-performance concrete. The mechanical properties of ultra-high-performance polymer reinforced concrete have been investigated. At first, the 3D-printed shell reinforcements were designed using 3D Max and Rhino 6 software. Then, each was fabricated through the fused deposition modeling method and positioned into the cubic, cylindrical, and prismatic molds. In the next step, the prepared Ultra-High-Performance Concrete mixture was poured into the molds, and the samples were cured for 28 days. Finally, the compressive, tensile, and flexural strength tests were carried out on the samples. The results indicated that the compressive, tensile, and flexural strengths of reinforced samples were lower than that of the unreinforced ones, respectively. Although including 3D-printed reinforcement decreased the mechanical properties of the Ultra-High-Performance Concrete samples, it changed the fracture mechanism of concrete from brittle to ductile
Effect of gelatin powder, almond shell, and recycled aggregates on chemical and mechanical properties of conventional concrete
The objective of the research is to study the effect of different additives on the conventional concrete. In this term, three types of materials have been added to the concrete: gelatin powder as the binder, recycled aggregates, and almond shell as the fine and coarse aggregates. Several experiments have been made tΠΎ determine physical and mechanical properties, such as test for compressive and tensile strengths, for impact loading strength, durability test (water absorption) and deep penetration tests. Moreover, the microstructure results for the new type of concrete have been studied by means of scanning electron microscopy (SEM) and energy-dispersive x-ray spectroscopy (EDXS). The results show that when 70 kg of gelatin powder is added to 1 m3 of concrete, the concreteβs compressive strength and tensile strength are improved more than 22%; during impact loading the first and ultimate cracks are 11 and 129 by numbers, and the first and ultimate cracksβ strength is more than 223 and 2346 J respectively. The durability of sample from concrete with additional gelatin has been improved. SEM results illustrate that the weakness of almond shell concrete is related to cracks and voids between the cement matrix and almond shell. The voids of gelatin concrete are higher than that of conventional concrete. The conventional concrete has smooth crystals, and gelatin concrete has sharp and cubic crystals. EDXS results show that chemical content of these two types of concrete is different: conventional concrete contains silicon, while EDXS results show that chemical content of these two types of concrete is different: conventional concrete contains silicon, while gelatin concrete contains calcium and also C-S-H gel is generated in it
ΠΠΊΡΠΏΠ΅ΡΠΈΠΌΠ΅Π½ΡΠ°Π»ΡΠ½ΠΎΠ΅ ΠΈ ΡΠΈΡΠ»Π΅Π½Π½ΠΎΠ΅ ΠΈΡΡΠ»Π΅Π΄ΠΎΠ²Π°Π½ΠΈΠ΅ ΡΠΎΠ½ΠΊΠΎΡΡΠ΅Π½Π½ΡΡ Π±Π°Π»ΠΎΠΊ Π΄Π²ΡΡΠ°Π²ΡΠΎΠ²ΠΎΠ³ΠΎ ΡΠ΅ΡΠ΅Π½ΠΈΡ ΠΏΡΠΈ ΠΈΠ·Π³ΠΈΠ±Π΅ ΠΈ ΠΊΡΡΡΠ΅Π½ΠΈΠΈ
The aim of the research - to investigate the behavior of thin-walled beam I-section loaded with bending and torsion using theoretical, numerical, and experimental approaches. In this paper, the main criteria for consideration of the different methods of analysis is the geometric characteristic of the section. The results obtained by the finite element method, the numerical method, as well as experimental data are compared. The analysis by finite element method by considering an additional degree of freedom at a node to include the restrained torsion and the dimension of the stiffness matrix is thus 14Γ14. The results of the calculation according to this theory are compared with the numerical solution obtained using finite element software, and with the results of the experiment. The I-beam section subject to bending with torsion is considered. The deformations, strain, and stress distributions of open thin-walled structures subjected to bending and torsion are presented using experimental methods. The comparative results for the angle of twisting, deformations, and normal stresses in the frame element subjected to combined loading are displayed graphically. To evaluate the results, a theoretical, numerical, and experimental investigation of I-beam behavior under bending and restrained torsion was carried out. As a result of the comparison, it was revealed that the results obtained according to the refined theory proposed by the authors have good convergence with experimental data and are also quite close to the values obtained using commercial software.Π¦Π΅Π»Ρ ΡΠ°Π±ΠΎΡΡ - ΠΈΡΡΠ»Π΅Π΄ΠΎΠ²Π°ΡΡ ΠΏΠΎΠ²Π΅Π΄Π΅Π½ΠΈΠ΅ ΡΠΎΠ½ΠΊΠΎΡΡΠ΅Π½Π½ΠΎΠΉ Π±Π°Π»ΠΊΠΈ I ΡΠ΅ΡΠ΅Π½ΠΈΡ, Π½Π°Π³ΡΡΠΆΠ΅Π½Π½ΠΎΠΉ ΠΈΠ·Π³ΠΈΠ±ΠΎΠΌ ΠΈ ΠΊΡΡΡΠ΅Π½ΠΈΠ΅ΠΌ, ΠΈΡΠΏΠΎΠ»ΡΠ·ΡΡ ΡΠ΅ΠΎΡΠ΅ΡΠΈΡΠ΅ΡΠΊΠΈΠ΅, ΡΠΈΡΠ»Π΅Π½Π½ΡΠ΅ ΠΈ ΡΠΊΡΠΏΠ΅ΡΠΈΠΌΠ΅Π½ΡΠ°Π»ΡΠ½ΡΠ΅ ΠΏΠΎΠ΄Ρ
ΠΎΠ΄Ρ. Π Π΄Π°Π½Π½ΠΎΠΉ ΡΠ°Π±ΠΎΡΠ΅ ΠΎΡΠ½ΠΎΠ²Π½ΡΠΌ ΠΊΡΠΈΡΠ΅ΡΠΈΠ΅ΠΌ Π΄Π»Ρ ΡΠ°ΡΡΠΌΠΎΡΡΠ΅Π½ΠΈΡ ΡΠ°Π·Π»ΠΈΡΠ½ΡΡ
ΠΌΠ΅ΡΠΎΠ΄ΠΎΠ² Π°Π½Π°Π»ΠΈΠ·Π° ΡΠ²Π»ΡΠ΅ΡΡΡ Π³Π΅ΠΎΠΌΠ΅ΡΡΠΈΡΠ΅ΡΠΊΠ°Ρ Ρ
Π°ΡΠ°ΠΊΡΠ΅ΡΠΈΡΡΠΈΠΊΠ° ΡΠ΅ΡΠ΅Π½ΠΈΡ. Π‘ΡΠ°Π²Π½ΠΈΠ²Π°ΡΡΡΡ ΡΠ΅Π·ΡΠ»ΡΡΠ°ΡΡ, ΠΏΠΎΠ»ΡΡΠ΅Π½Π½ΡΠ΅ ΠΌΠ΅ΡΠΎΠ΄ΠΎΠΌ ΠΊΠΎΠ½Π΅ΡΠ½ΡΡ
ΡΠ»Π΅ΠΌΠ΅Π½ΡΠΎΠ², ΡΠΈΡΠ»Π΅Π½Π½ΡΠΌ ΠΌΠ΅ΡΠΎΠ΄ΠΎΠΌ, Π° ΡΠ°ΠΊΠΆΠ΅ ΡΠΊΡΠΏΠ΅ΡΠΈΠΌΠ΅Π½ΡΠ°Π»ΡΠ½ΡΠ΅ Π΄Π°Π½Π½ΡΠ΅. ΠΡΠΈ Π°Π½Π°Π»ΠΈΠ·Π΅ ΠΌΠ΅ΡΠΎΠ΄ΠΎΠΌ ΠΊΠΎΠ½Π΅ΡΠ½ΡΡ
ΡΠ»Π΅ΠΌΠ΅Π½ΡΠΎΠ² ΡΡΠΈΡΡΠ²Π°Π΅ΡΡΡ Π΄ΠΎΠΏΠΎΠ»Π½ΠΈΡΠ΅Π»ΡΠ½Π°Ρ ΡΡΠ΅ΠΏΠ΅Π½Ρ ΡΠ²ΠΎΠ±ΠΎΠ΄Ρ Π² ΡΠ·Π»Π΅ Π΄Π»Ρ Π²ΠΊΠ»ΡΡΠ΅Π½ΠΈΡ ΠΏΠΎΠ²ΡΠΎΡΠ½ΠΎ Π΄Π΅ΡΠΎΡΠΌΠΈΡΠΎΠ²Π°Π½Π½ΠΎΠ³ΠΎ ΠΊΡΡΡΠ΅Π½ΠΈΡ, ΡΠ°ΠΊΠΈΠΌ ΠΎΠ±ΡΠ°Π·ΠΎΠΌ, ΡΠ°Π·ΠΌΠ΅ΡΠ½ΠΎΡΡΡ ΠΌΠ°ΡΡΠΈΡΡ ΠΆΠ΅ΡΡΠΊΠΎΡΡΠΈ ΡΠΎΡΡΠ°Π²Π»ΡΠ΅Ρ 14Γ14. Π Π΅Π·ΡΠ»ΡΡΠ°ΡΡ ΡΠ°ΡΡΠ΅ΡΠ° ΠΏΠΎ Π΄Π°Π½Π½ΠΎΠΉ ΡΠ΅ΠΎΡΠΈΠΈ ΡΡΠ°Π²Π½ΠΈΠ²Π°ΡΡΡΡ Ρ ΡΠΈΡΠ»Π΅Π½Π½ΡΠΌ ΡΠ΅ΡΠ΅Π½ΠΈΠ΅ΠΌ, ΠΏΠΎΠ»ΡΡΠ΅Π½Π½ΡΠΌ Ρ ΠΏΠΎΠΌΠΎΡΡΡ ΠΏΡΠΎΠ³ΡΠ°ΠΌΠΌΡ ΠΊΠΎΠ½Π΅ΡΠ½ΡΡ
ΡΠ»Π΅ΠΌΠ΅Π½ΡΠΎΠ², ΠΈ Ρ ΡΠ΅Π·ΡΠ»ΡΡΠ°ΡΠ°ΠΌΠΈ ΡΠΊΡΠΏΠ΅ΡΠΈΠΌΠ΅Π½ΡΠ°. Π Π°ΡΡΠΌΠ°ΡΡΠΈΠ²Π°Π΅ΡΡΡ Π΄Π²ΡΡΠ°Π²ΡΠΎΠ²ΠΎΠ΅ ΡΠ΅ΡΠ΅Π½ΠΈΠ΅ Π±Π°Π»ΠΊΠΈ, ΠΏΠΎΠ΄Π²Π΅ΡΠΆΠ΅Π½Π½ΠΎΠΉ ΠΈΠ·Π³ΠΈΠ±Ρ Ρ ΠΊΡΡΡΠ΅Π½ΠΈΠ΅ΠΌ. ΠΡΠ΅Π΄ΡΡΠ°Π²Π»Π΅Π½Ρ Π΄Π΅ΡΠΎΡΠΌΠ°ΡΠΈΠΈ, Π½Π°ΠΏΡΡΠΆΠ΅Π½ΠΈΡ ΠΈ ΡΠ°ΡΠΏΡΠ΅Π΄Π΅Π»Π΅Π½ΠΈΡ Π½Π°ΠΏΡΡΠΆΠ΅Π½ΠΈΠΉ ΠΎΡΠΊΡΡΡΡΡ
ΡΠΎΠ½ΠΊΠΎΡΡΠ΅Π½Π½ΡΡ
ΠΊΠΎΠ½ΡΡΡΡΠΊΡΠΈΠΉ, ΠΏΠΎΠ΄Π²Π΅ΡΠΆΠ΅Π½Π½ΡΡ
ΠΈΠ·Π³ΠΈΠ±Ρ ΠΈ ΠΊΡΡΡΠ΅Π½ΠΈΡ, Ρ ΠΈΡΠΏΠΎΠ»ΡΠ·ΠΎΠ²Π°Π½ΠΈΠ΅ΠΌ ΡΠΊΡΠΏΠ΅ΡΠΈΠΌΠ΅Π½ΡΠ°Π»ΡΠ½ΡΡ
ΠΌΠ΅ΡΠΎΠ΄ΠΎΠ². Π‘ΡΠ°Π²Π½ΠΈΡΠ΅Π»ΡΠ½ΡΠ΅ ΡΠ΅Π·ΡΠ»ΡΡΠ°ΡΡ Π΄Π»Ρ ΡΠ³Π»Π° Π·Π°ΠΊΡΡΡΠΈΠ²Π°Π½ΠΈΡ, Π΄Π΅ΡΠΎΡΠΌΠ°ΡΠΈΠΉ ΠΈ Π½ΠΎΡΠΌΠ°Π»ΡΠ½ΡΡ
Π½Π°ΠΏΡΡΠΆΠ΅Π½ΠΈΠΉ Π² ΡΠ»Π΅ΠΌΠ΅Π½ΡΠ΅ ΡΠ°ΠΌΡ, ΠΏΠΎΠ΄Π²Π΅ΡΠ³Π½ΡΡΠΎΠΌ ΠΊΠΎΠΌΠ±ΠΈΠ½ΠΈΡΠΎΠ²Π°Π½Π½ΠΎΠΌΡ Π½Π°Π³ΡΡΠΆΠ΅Π½ΠΈΡ, ΠΎΡΠΎΠ±ΡΠ°ΠΆΠ΅Π½Ρ Π³ΡΠ°ΡΠΈΡΠ΅ΡΠΊΠΈ. ΠΠ»Ρ ΠΎΡΠ΅Π½ΠΊΠΈ ΠΏΠΎΠ»ΡΡΠ΅Π½Π½ΡΡ
ΡΠ΅Π·ΡΠ»ΡΡΠ°ΡΠΎΠ² ΠΏΡΠΎΠ²Π΅Π΄Π΅Π½ΠΎ ΡΠ΅ΠΎΡΠ΅ΡΠΈΠΊΠΎ-ΠΊΠ°Π»ΡΠΊΡΠ»ΡΡΠΈΠΎΠ½Π½ΠΎΠ΅, ΡΠΈΡΠ»Π΅Π½Π½ΠΎΠ΅ ΠΈ ΡΠΊΡΠΏΠ΅ΡΠΈΠΌΠ΅Π½ΡΠ°Π»ΡΠ½ΠΎΠ΅ ΠΈΡΡΠ»Π΅Π΄ΠΎΠ²Π°Π½ΠΈΠ΅ ΠΏΠΎΠ²Π΅Π΄Π΅Π½ΠΈΡ Π΄Π²ΡΡΠ°Π²ΡΠΎΠ²ΠΎΠΉ Π±Π°Π»ΠΊΠΈ ΠΏΡΠΈ ΠΈΠ·Π³ΠΈΠ±Π΅ ΠΈ ΠΎΠ³ΡΠ°Π½ΠΈΡΠ΅Π½Π½ΠΎΠΌ ΠΊΡΡΡΠ΅Π½ΠΈΠΈ. ΠΡΡΠ²Π»Π΅Π½ΠΎ, ΡΡΠΎ ΡΠ΅Π·ΡΠ»ΡΡΠ°ΡΡ, ΠΏΠΎΠ»ΡΡΠ΅Π½Π½ΡΠ΅ Π² ΡΠΎΠΎΡΠ²Π΅ΡΡΡΠ²ΠΈΠΈ Ρ ΠΏΡΠ΅Π΄Π»ΠΎΠΆΠ΅Π½Π½ΠΎΠΉ Π°Π²ΡΠΎΡΠ°ΠΌΠΈ ΡΡΠΎΡΠ½Π΅Π½Π½ΠΎΠΉ ΡΠ΅ΠΎΡΠΈΠ΅ΠΉ, ΠΈΠΌΠ΅ΡΡ Ρ
ΠΎΡΠΎΡΡΡ ΡΡ
ΠΎΠ΄ΠΈΠΌΠΎΡΡΡ Ρ ΡΠΊΡΠΏΠ΅ΡΠΈΠΌΠ΅Π½ΡΠ°Π»ΡΠ½ΡΠΌΠΈ Π΄Π°Π½Π½ΡΠΌΠΈ ΠΈ Π΄ΠΎΡΡΠ°ΡΠΎΡΠ½ΠΎ Π±Π»ΠΈΠ·ΠΊΠΈ ΠΊ Π·Π½Π°ΡΠ΅Π½ΠΈΡΠΌ, ΠΏΠΎΠ»ΡΡΠ΅Π½Π½ΡΠΌ Ρ ΠΏΠΎΠΌΠΎΡΡΡ ΠΊΠΎΠΌΠΌΠ΅ΡΡΠ΅ΡΠΊΠΎΠ³ΠΎ ΠΏΡΠΎΠ³ΡΠ°ΠΌΠΌΠ½ΠΎΠ³ΠΎ ΠΎΠ±Π΅ΡΠΏΠ΅ΡΠ΅Π½ΠΈΡ
ΠΠ»ΠΈΡΠ½ΠΈΠ΅ ΠΏΠΎΡΠΎΡΠΊΠ° ΠΆΠ΅Π»Π°ΡΠΈΠ½Π°, ΠΌΠΈΠ½Π΄Π°Π»ΡΠ½ΠΎΠΉ ΡΠΊΠΎΡΠ»ΡΠΏΡ ΠΈ Π²ΡΠΎΡΠΈΡΠ½ΡΡ Π·Π°ΠΏΠΎΠ»Π½ΠΈΡΠ΅Π»Π΅ΠΉ Π½Π° Ρ ΠΈΠΌΠΈΡΠ΅ΡΠΊΠΈΠ΅ ΠΈ ΠΌΠ΅Ρ Π°Π½ΠΈΡΠ΅ΡΠΊΠΈΠ΅ ΡΠ²ΠΎΠΉΡΡΠ²Π° ΠΎΠ±ΡΡΠ½ΠΎΠ³ΠΎ Π±Π΅ΡΠΎΠ½Π°
The objective of the research is to study the effect of different additives on the conventional concrete. In this term, three types of materials have been added to the concrete: gelatin powder as the binder, recycled aggregates, and almond shell as the fine and coarse aggregates. Several experiments have been made tΠΎ determine physical and mechanical properties, such as test for compressive and tensile strengths, for impact loading strength, durability test (water absorption) and deep penetration tests. Moreover, the microstructure results for the new type of concrete have been studied by means of scanning electron microscopy (SEM) and energy-dispersive x-ray spectroscopy (EDXS). The results show that when 70 kg of gelatin powder is added to 1 m3 of concrete, the concreteβs compressive strength and tensile strength are improved more than 22%; during impact loading the first and ultimate cracks are 11 and 129 by numbers, and the first and ultimate cracksβ strength is more than 223 and 2346 J respectively. The durability of sample from concrete with additional gelatin has been improved. SEM results illustrate that the weakness of almond shell concrete is related to cracks and voids between the cement matrix and almond shell. The voids of gelatin concrete are higher than that of conventional concrete. The conventional concrete has smooth crystals, and gelatin concrete has sharp and cubic crystals. EDXS results show that chemical content of these two types of concrete is different: conventional concrete contains silicon, while EDXS results show that chemical content of these two types of concrete is different: conventional concrete contains silicon, while gelatin concrete contains calcium and also C-S-H gel is generated in it.Π¦Π΅Π»Ρ ΠΈΡΡΠ»Π΅Π΄ΠΎΠ²Π°Π½ΠΈΡ - ΠΎΠΏΡΠ΅Π΄Π΅Π»ΠΈΡΡ Π²Π»ΠΈΡΠ½ΠΈΠ΅ ΡΠ°Π·Π»ΠΈΡΠ½ΡΡ
Π΄ΠΎΠ±Π°Π²ΠΎΠΊ Π½Π° ΡΠ²ΠΎΠΉΡΡΠ²Π° ΠΎΠ±ΡΡΠ½ΠΎΠ³ΠΎ Π±Π΅ΡΠΎΠ½Π°. Π Π±Π΅ΡΠΎΠ½Π½ΡΡ ΡΠΌΠ΅ΡΡ Π²Π½Π΅ΡΠ΅Π½Ρ ΡΡΠΈ Π²ΠΈΠ΄Π° Π΄ΠΎΠ±Π°Π²ΠΎΠΊ: ΠΆΠ΅Π»Π°ΡΠΈΠ½ΠΎΠ²ΡΠΉ ΠΏΠΎΡΠΎΡΠΎΠΊ Π² ΠΊΠ°ΡΠ΅ΡΡΠ²Π΅ ΡΠ²ΡΠ·ΡΡΡΠ΅Π³ΠΎ, Π²ΡΠΎΡΠΈΡΠ½ΡΠ΅ Π·Π°ΠΏΠΎΠ»Π½ΠΈΡΠ΅Π»ΠΈ ΠΈ ΠΌΠΈΠ½Π΄Π°Π»ΡΠ½Π°Ρ ΡΠΊΠΎΡΠ»ΡΠΏΠ° Π² ΠΊΠ°ΡΠ΅ΡΡΠ²Π΅ ΠΌΠ΅Π»ΠΊΠΎΠ³ΠΎ ΠΈ ΠΊΡΡΠΏΠ½ΠΎΠ³ΠΎ Π·Π°ΠΏΠΎΠ»Π½ΠΈΡΠ΅Π»Π΅ΠΉ. ΠΡΠΎΠ²Π΅Π΄Π΅Π½ΠΎ ΠΈΡΡΠ»Π΅Π΄ΠΎΠ²Π°Π½ΠΈΠ΅ ΠΏΠΎ ΠΎΠΏΡΠ΅Π΄Π΅Π»Π΅Π½ΠΈΡ ΡΠΈΠ·ΠΈΠΊΠΎ-ΠΌΠ΅Ρ
Π°Π½ΠΈΡΠ΅ΡΠΊΠΈΡ
ΡΠ²ΠΎΠΉΡΡΠ² Π±Π΅ΡΠΎΠ½Π° Ρ ΡΠΊΠ°Π·Π°Π½Π½ΡΠΌΠΈ Π΄ΠΎΠ±Π°Π²ΠΊΠ°ΠΌΠΈ: ΠΏΡΠΎΡΠ½ΠΎΡΡΠΈ Π½Π° ΡΠΆΠ°ΡΠΈΠ΅ ΠΈ ΡΠ°ΡΡΡΠΆΠ΅Π½ΠΈΠ΅, ΠΈΡΠΏΡΡΠ°Π½ΠΈΡ Π½Π° ΡΠ΄Π°ΡΠ½ΡΡ Π½Π°Π³ΡΡΠ·ΠΊΡ, Π½Π° Π΄ΠΎΠ»Π³ΠΎΠ²Π΅ΡΠ½ΠΎΡΡΡ (Π²ΠΎΠ΄ΠΎΠΏΠΎΠ³Π»ΠΎΡΠ΅Π½ΠΈΠ΅) ΠΈ Π½Π° Π³Π»ΡΠ±ΠΈΠ½Ρ ΠΏΡΠΎΠ½ΠΈΠΊΠ½ΠΎΠ²Π΅Π½ΠΈΡ Π²Π»Π°Π³ΠΈ Π² Π±Π΅ΡΠΎΠ½. ΠΠΈΠΊΡΠΎΡΡΡΡΠΊΡΡΡΠ° Π±Π΅ΡΠΎΠ½Π° ΠΈΠ·ΡΡΠ΅Π½Π° Ρ ΠΏΠΎΠΌΠΎΡΡΡ ΡΠΊΠ°Π½ΠΈΡΡΡΡΠ΅ΠΉ ΡΠ»Π΅ΠΊΡΡΠΎΠ½Π½ΠΎΠΉ ΠΌΠΈΠΊΡΠΎΡΠΊΠΎΠΏΠΈΠΈ (SEM) ΠΈ ΡΠ½Π΅ΡΠ³ΠΎΠ΄ΠΈΡΠΏΠ΅ΡΡΠΈΠΎΠ½Π½ΠΎΠΉ ΡΠ΅Π½ΡΠ³Π΅Π½ΠΎΠ²ΡΠΊΠΎΠΉ ΡΠΏΠ΅ΠΊΡΡΠΎΡΠΊΠΎΠΏΠΈΠΈ (EDXS). Π£ΡΡΠ°Π½ΠΎΠ²Π»Π΅Π½ΠΎ, ΡΡΠΎ ΠΏΡΠΈ Π΄ΠΎΠ±Π°Π²Π»Π΅Π½ΠΈΠΈ 70 ΠΊΠ³ ΠΆΠ΅Π»Π°ΡΠΈΠ½ΠΎΠ²ΠΎΠ³ΠΎ ΠΏΠΎΡΠΎΡΠΊΠ° Π½Π° 1 ΠΌ3 Π±Π΅ΡΠΎΠ½Π° Π΅Π³ΠΎ ΠΏΡΠΎΡΠ½ΠΎΡΡΡ Π½Π° ΡΠΆΠ°ΡΠΈΠ΅ ΠΈ ΡΠ°ΡΡΡΠΆΠ΅Π½ΠΈΠ΅ ΡΠ²Π΅Π»ΠΈΡΠΈΠ»Π°ΡΡ Π±ΠΎΠ»Π΅Π΅ ΡΠ΅ΠΌ Π½Π° 22 %; ΠΏΠΎΠ΄ Π΄Π΅ΠΉΡΡΠ²ΠΈΠ΅ΠΌ ΡΠ΄Π°ΡΠ½ΠΎΠΉ Π½Π°Π³ΡΡΠ·ΠΊΠΈ Π½Π°ΡΠ°Π»ΡΠ½ΠΎΠ΅ ΠΈ ΠΏΡΠ΅Π΄Π΅Π»ΡΠ½ΠΎΠ΅ ΠΊΠΎΠ»ΠΈΡΠ΅ΡΡΠ²ΠΎ ΡΡΠ΅ΡΠΈΠ½ ΡΠΎΡΡΠ°Π²Π»ΡΠ΅Ρ 11 ΠΈ 129, Π° Π½Π°ΡΠ°Π»ΡΠ½Π°Ρ ΠΈ ΠΏΡΠ΅Π΄Π΅Π»ΡΠ½Π°Ρ ΠΏΡΠΎΡΠ½ΠΎΡΡΡ ΡΡΠ΅ΡΠΈΠ½ΠΎΠΎΠ±ΡΠ°Π·ΠΎΠ²Π°Π½ΠΈΡ - Π±ΠΎΠ»Π΅Π΅ 223 ΠΈ 2346 ΠΠΆ ΡΠΎΠΎΡΠ²Π΅ΡΡΡΠ²Π΅Π½Π½ΠΎ. ΠΡΠΎΠΌΠ΅ ΡΠΎΠ³ΠΎ, ΠΏΠΎΠΊΠ°Π·Π°ΡΠ΅Π»ΠΈ Π΄ΠΎΠ»Π³ΠΎΠ²Π΅ΡΠ½ΠΎΡΡΠΈ Π»ΡΡΡΠ΅ Ρ Π±Π΅ΡΠΎΠ½Π° Ρ Π΄ΠΎΠ±Π°Π²Π»Π΅Π½ΠΈΠ΅ΠΌ ΠΆΠ΅Π»Π°ΡΠΈΠ½Π°. Π Π΅Π·ΡΠ»ΡΡΠ°ΡΡ, ΠΏΠΎΠ»ΡΡΠ΅Π½Π½ΡΠ΅ ΠΏΡΠΈ ΠΏΠΎΠΌΠΎΡΠΈ SEM, Π΄Π΅ΠΌΠΎΠ½ΡΡΡΠΈΡΡΡΡ, ΡΡΠΎ ΠΏΠΎΠ½ΠΈΠΆΠ΅Π½Π½Π°Ρ ΠΏΡΠΎΡΠ½ΠΎΡΡΡ Π±Π΅ΡΠΎΠ½Π° Ρ Π΄ΠΎΠ±Π°Π²Π»Π΅Π½ΠΈΠ΅ΠΌ ΠΌΠΈΠ½Π΄Π°Π»ΡΠ½ΠΎΠΉ ΡΠΊΠΎΡΠ»ΡΠΏΡ ΡΠ²ΡΠ·Π°Π½Π° Ρ ΡΡΠ΅ΡΠΈΠ½Π°ΠΌΠΈ ΠΈ ΠΏΡΡΡΠΎΡΠ°ΠΌΠΈ ΠΌΠ΅ΠΆΠ΄Ρ ΡΠ΅ΠΌΠ΅Π½ΡΠ½ΠΎΠΉ ΠΌΠ°ΡΡΠΈΡΠ΅ΠΉ ΠΈ ΠΌΠΈΠ½Π΄Π°Π»ΡΠ½ΠΎΠΉ ΡΠΊΠΎΡΠ»ΡΠΏΠΎΠΉ. ΠΡΡΡΠΎΡΡ Π² Π±Π΅ΡΠΎΠ½Π΅ Ρ ΠΆΠ΅Π»Π°ΡΠΈΠ½ΠΎΠΌ Π²ΡΡΠ΅, ΡΠ΅ΠΌ Π² ΠΎΠ±ΡΡΠ½ΠΎΠΌ Π±Π΅ΡΠΎΠ½Π΅. Π‘ΡΡΡΠΊΡΡΡΠ° ΠΎΠ±ΡΡΠ½ΠΎΠ³ΠΎ Π±Π΅ΡΠΎΠ½Π° ΠΈΠΌΠ΅Π΅Ρ Π²ΠΈΠ΄ Π³Π»Π°Π΄ΠΊΠΈΡ
ΠΊΡΠΈΡΡΠ°Π»Π»ΠΎΠ², Π° Π±Π΅ΡΠΎΠ½Π° Ρ ΠΆΠ΅Π»Π°ΡΠΈΠ½ΠΎΠΌ - ΠΎΡΡΡΡΠ΅ ΠΈ ΠΊΡΠ±ΠΈΡΠ΅ΡΠΊΠΈΠ΅ ΠΊΡΠΈΡΡΠ°Π»Π»Ρ. Π Π΅Π·ΡΠ»ΡΡΠ°ΡΡ, ΠΏΠΎΠ»ΡΡΠ΅Π½Π½ΡΠ΅ Ρ ΠΏΠΎΠΌΠΎΡΡΡ EDXS, ΠΏΠΎΠΊΠ°Π·Π°Π»ΠΈ ΡΠ°Π·Π»ΠΈΡΠΈΠ΅ Π² Ρ
ΠΈΠΌΠΈΡΠ΅ΡΠΊΠΎΠΌ ΡΠΎΡΡΠ°Π²Π΅: ΠΎΠ±ΡΡΠ½ΡΠΉ Π±Π΅ΡΠΎΠ½ ΡΠΎΠ΄Π΅ΡΠΆΠΈΡ ΠΊΡΠ΅ΠΌΠ½ΠΈΠΉ, ΡΠΎΠ³Π΄Π° ΠΊΠ°ΠΊ Π±Π΅ΡΠΎΠ½ Ρ Π΄ΠΎΠ±Π°Π²ΠΊΠΎΠΉ ΠΆΠ΅Π»Π°ΡΠΈΠ½Π° Π² Π²ΡΡΠ΅ΡΠΊΠ°Π·Π°Π½Π½ΡΡ
ΠΏΡΠΎΠΏΠΎΡΡΠΈΡΡ
ΡΠΎΠ΄Π΅ΡΠΆΠΈΡ ΠΊΠ°Π»ΡΡΠΈΠΉ ΠΈ Π² Π½Π΅ΠΌ ΠΎΠ±ΡΠ°Π·ΡΠ΅ΡΡΡ Π³Π΅Π»Ρ C-S-H