488 research outputs found
Unsteady flow phenomena in industrial centrifugal compressor stage
The results of an experimental investigation on a typical centrifugal compressor stage running on an atmospheric pressure test rig are shown. Unsteady flow was invariably observed at low flow well before surge. In order to determine the influence of the statoric components, the same impeller was repeatedly tested with the same vaneless diffuser, but varying return channel geometry. Experimental results show the strong effect exerted by the return channel, both on onset and on the behavior of unsteady flow. Observed phenomena have been found to confirm well the observed dynamic behavior of full load tested machines when gas density is high enough to cause appreciable mechanical vibrations. Therefore, testing of single stages at atmospheric pressure may provide a fairly accurate prediction of this kind of aerodynamic excitation
Magnetic screening in proximity effect Josephson-junction arrays
The modulation with magnetic field of the sheet inductance measured on
proximity effect Josephson-junction arrays (JJAs) is progressively vanishing on
lowering the temperature, leading to a low temperature field-independent
response. This behaviour is consistent with the decrease of the two-dimensional
penetration length below the lattice parameter. Low temperature data are
quantitatively compared with theoretical predictions based on the XY model in
absence of thermal fluctuations. The results show that the description of a JJA
within the XY model is incomplete and the system is put well beyond the weak
screening limit which is usually assumed in order to invoke the well known
frustrated XY model describing classical Josephson-junction arrays.Comment: 6 pages, 5 figure
Assessing the Impact of Different Ocean Analysis Schemes on Oceanic and Underwater Acoustic Predictions
Assimilating oceanic observations into prediction systems is an advantageous approach for real-time ocean environment characterization. However, its benefits to underwater acoustic predictions are not trivial due to the nonlinearity and sensitivity of underwater acoustic propagation to small-scale oceanic features. In order to assess the potential of oceanic data assimilation, integrated ocean-acoustic Observing System Simulation Experiments are conducted. Synthetic altimetry and in situ data were assimilated through a variational oceanographic data assimilation system. The predicted sound speed fields are then ingested in a range-dependent acoustic model for transmission loss (TL) predictions. The predicted TLs are analyzed for the purpose of (i) evaluating the contributions of different sources to the uncertainties of oceanic and acoustic forecasts and (ii) comparing the impact of different oceanic analysis schemes on the TL prediction accuracy. Using ensemble member clustering techniques, the contributions of boundary conditions, ocean parameterizations, and geoacoustic characterization to acoustic prediction uncertainties are addressed. Subsequently, the impact of three-dimensional variational (3DVAR), 4DVAR, and hybrid ensemble-3DVAR data assimilation on acoustic TL prediction at two signal frequencies (75 and 2,500 Hz) and different ranges (30 and 60 km) are compared. 3DVAR significantly improves the predicted TL accuracy compared to the control run. Promisingly, 4DVAR and hybrid data assimilation further improve the TL forecasts, the hybrid scheme achieving the highest skill scores for all cases, while being the most computationally intensive scheme. The optimal scheme choice thus depends on requirements on the accuracy and computational constraints. These findings foster developments of coupled data assimilation for operational underwater acoustic propagation
Mapping the dynamic interactions between vortex species in highly anisotropic superconductors
Here we use highly sensitive magnetisation measurements performed using a
Hall probe sensor on single crystals of highly anisotropic high temperature
superconductors to study the dynamic interactions
between the two species of vortices that exist in such superconductors. We
observe a remarkable and clearly delineated high temperature regime that
mirrors the underlying vortex phase diagram. Our results map out the parameter
space over which these dynamic interaction processes can be used to create
vortex ratchets, pumps and other fluxonic devices.Comment: 7 pages, 3 figures, to be published in Supercond. Sci. Techno
Resource Windfalls, Political Regimes, and Political Stability
We study theoretically and empirically whether natural resource windfalls affect political regimes. We show that windfalls have no effect on democracies, while they have heterogeneous political consequences in autocracies. In deeply entrenched autocracies, the effect of windfalls is virtually nil, while in moderately entrenched autocracies, windfalls significantly exacerbate the autocratic nature of the political system. To frame the empirical work, we present a simple model in which political incumbents choose the degree of political contestability and potential challengers decide whether to try to unseat the incumbents. The model uncovers a mechanism for the asymmetric impact of resource windfalls on democracies and autocracies, as well as the the differential impact within autocracies
- …