373 research outputs found

    Equilibrium Clusters in Concentrated Lysozyme Protein Solutions

    Full text link
    We have studied the structure of salt-free lysozyme at 293 K and pH 7.8 using molecular simulations and experimental SAXS effective potentials between proteins at three volume fractions, 0.012, 0.033, and 0.12. We found that the structure of lysozyme near physiological conditions strongly depends on the volume fraction of proteins. The studied lysozyme solutions are dominated by monomers only for <0.012; for the strong dilution 70% of proteins are in a form of monomers. For 0.033 only 20% of proteins do not belong to a cluster. The clusters are mainly elongated. For 0.12 almost no individual particles exits, and branched, irregular clusters of large extent appear. Our simulation study provides new insight into the formation of equilibrium clusters in charged protein solutions near physiological conditions

    Influence of activated carbon surface oxygen functionalities on SO2 physisorption – Simulation and experiment

    Get PDF
    The influence of the gradual oxidation of carbons on SO2 physisorption was studied, by comparison of experimental and simulated SO2 adsorption isotherms. The results confirmed a significant impact of surface groups on the SO2 adsorption. The simulations also revealed a similar, to that observed experimentally, effect of the increase in the percentage of the smallest micropores on adsorption isotherms. The isotherms were analysed using the CMMS model. The conclusion is that this model seems to be a good and sensitive tool for studying SO2 physisorption mechanism since a very good qualitative agreement between the experimental and simulated data was observed

    CO 2 - reinforced nanoporous carbon potential energy field during CO 2 /CH 4 mixture adsorption. A comprehensive volumetric, in-situ IR, and thermodynamic insight

    Get PDF
    CO2/CH4 mixture adsorption is very important in different fields like, for example, a biogas purification. Using a comprehensive experimental approach based on volumetric and in-situ FTIR measurements the new results of CO2/CH4 mixture separation on a carbon film are reported. The application of this experimental approach makes it possible to elaborate the effect of enhanced CH4 adsorption at low CO2 concentrations in the adsorbed phase. The presence of this effect is proved experimentally for the first time. This effect is responsible for the deviation of Ideal Adsorption Solution model from the experimental data. To discuss separation mechanism the activity coefficients at constant spreading pressure values are calculated. At low spreading pressure, CO2 activity coefficient is strongly disturbed by the presence of CH4 molecules in the surface mixture. In contrast, the CH4 activity coefficients are remarkably influenced by adsorbed CO2 only at higher CO2 surface concentrations. The obtained activity coefficients are successfully described by a new modification of the Redlich-Kister equation. This modification takes into account the interaction between binary mixture components and an adsorbent. Finally we show that the studied carbon possesses very good CO2/CH4 mixture separation properties, comparable to those reported for other adsorbents

    What is the value of water contact angle on silicon?

    Get PDF
    Silicon is a widely applied material and the wetting of silicon surface is an important phenomenon. However, contradictions in the literature appear considering the value of the water contact angle (WCA). The purpose of this study is to present a holistic experimental and theoretical approach to the WCA determination. To do this, we checked the chemical composition of the silicon (1,0,0) surface by using the X-ray photoelectron spectroscopy (XPS) method, and next this surface was purified using different cleaning methods. As it was proved that airborne hydrocarbons change a solid wetting properties the WCA values were measured in hydrocarbons atmosphere. Next, molecular dynamics (MD) simulations were performed to determine the mechanism of wetting in this atmosphere and to propose the force field parameters for silica wetting simulation. It is concluded that the best method of surface cleaning is the solvent-reinforced de Gennes method, and the WCA value of silicon covered by SiO2 layer is equal to 20.7° (at room temperature). MD simulation results show that the mechanism of pure silicon wetting is similar to that reported for graphene, and the mechanism of silicon covered by SiO2 layer wetting is similar to this observed recently for a MOF

    Revisiting wetting, freezing, and evaporation mechanisms of water on copper

    Get PDF
    Wetting of metal surfaces plays an important role in fuel cells, corrosion science, and heat-transfer devices. It has been recently stipulated that Cu surface is hydrophobic. In order to address this issue we use high purity (1 1 1) Cu prepared without oxygen, and resistant to oxidation. Using the modern Fringe Projection Phase-Shifting method of surface roughness determination, together with a new cell allowing the vacuum and thermal desorption of samples, we define the relation between the copper surface roughness and water contact angle (WCA). Next by a simple extrapolation, we determine the WCA for the perfectly smooth copper surface (WCA = 34°). Additionally, the kinetics of airborne hydrocarbons adsorption on copper was measured. It is shown for the first time that the presence of surface hydrocarbons strongly affects not only WCA, but also water droplet evaporation and the temperature of water droplet freezing. The different behavior and features of the surfaces were observed once the atmosphere of the experiment was changed from argon to air. The evaporation results are well described by the theoretical framework proposed by Semenov, and the freezing process by the dynamic growth angle model

    Stability of coordination polymers in water: state of the art and towards a methodology for nonporous materials

    Get PDF
    A mini review on the study concerning water stability of coordination polymers (CPs) is presented. Next, following the procedure proposed recently by Gelfand and Shimizu (Dalton Trans 45:3668-3678, 2016) the stability of three cysteine (Cys)containing CPs is investigated. The stability of studied CPs decreases in the order: Zn(Cys)(2)>Mg(Cys)(2)>Ca(Cys)(2) H2O. For the latternever reported before, the structure is additionally determined and it is proved that water is located in the first coordination sphere. It is shown that for nonporous CPs, in contrast to the porous ones, the immersion in water at 20 degrees C is more drastic for studied solids than the harsh humid conditions (80 degrees C at 90% R.H.). Finally all materials are assigned to the hydrolytic stability groups and it is concluded that the stability of studied CPs correlates well with the standard reduction potentials. This leads to the conclusion that the application of more inert metal as a node causes larger stability of studied CPs
    • …
    corecore