2,856 research outputs found
Thin n-in-p planar pixel sensors and active edge sensors for the ATLAS upgrade at HL-LHC
Silicon pixel modules employing n-in-p planar sensors with an active
thickness of 200 m, produced at CiS, and 100-200 m thin active/slim
edge sensor devices, produced at VTT in Finland have been interconnected to
ATLAS FE-I3 and FE-I4 read-out chips. The thin sensors are designed for high
energy physics collider experiments to ensure radiation hardness at high
fluences. Moreover, the active edge technology of the VTT production maximizes
the sensitive region of the assembly, allowing for a reduced overlap of the
modules in the pixel layer close to the beam pipe. The CiS production includes
also four chip sensors according to the module geometry planned for the outer
layers of the upgraded ATLAS pixel detector to be operated at the HL-LHC. The
modules have been characterized using radioactive sources in the laboratory and
with high precision measurements at beam tests to investigate the hit
efficiency and charge collection properties at different bias voltages and
particle incidence angles. The performance of the different sensor thicknesses
and edge designs are compared before and after irradiation up to a fluence of
.Comment: In proceedings of the 10th International Conference on Position
Sensitive Detectors, PSD10 201
Nanoflare Evidence from Analysis of the X-Ray Variability of an Active Region Observed with Hinode/XRT
The heating of the solar corona is one of the big questions in astrophysics.
Rapid pulses called nanoflares are among the best candidate mechanisms. The
analysis of the time variability of coronal X-ray emission is potentially a
very useful tool to detect impulsive events. We analyze the small-scale
variability of a solar active region in a high cadence Hinode/XRT observation.
The dataset allows us to detect very small deviations of emission fluctuations
from the distribution expected for a constant rate. We discuss the deviations
in the light of the pulsed-heating scenario.Comment: 6 pages, 4 figure
Heavily Irradiated N-in-p Thin Planar Pixel Sensors with and without Active Edges
We present the results of the characterization of silicon pixel modules
employing n-in-p planar sensors with an active thickness of 150
m, produced at MPP/HLL, and 100-200 m thin active
edge sensor devices, produced at VTT in Finland. These thin sensors are
designed as candidates for the ATLAS pixel detector upgrade to be operated at
the HL-LHC, as they ensure radiation hardness at high fluences. They are
interconnected to the ATLAS FE-I3 and FE-I4 read-out chips. Moreover, the
n-in-p technology only requires a single side processing and thereby it is a
cost-effective alternative to the n-in-n pixel technology presently employed in
the LHC experiments. High precision beam test measurements of the hit
efficiency have been performed on these devices both at the CERN SpS and at
DESY, Hamburg. We studied the behavior of these sensors at different bias
voltages and different beam incident angles up to the maximum one expected for
the new Insertable B-Layer of ATLAS and for HL-LHC detectors. Results obtained
with 150 m thin sensors, assembled with the new ATLAS FE-I4 chip
and irradiated up to a fluence of
410, show that they are
excellent candidates for larger radii of the silicon pixel tracker in the
upgrade of the ATLAS detector at HL-LHC. In addition, the active edge
technology of the VTT devices maximizes the active area of the sensor and
reduces the material budget to suit the requirements for the innermost layers.
The edge pixel performance of VTT modules has been investigated at beam test
experiments and the analysis after irradiation up to a fluence of
510 has been performed
using radioactive sources in the laboratory.Comment: Proceedings for iWoRiD 2013 conference, submitted to JINS
On the importance of background subtraction in the analysis of coronal loops observed with TRACE
In the framework of TRACE coronal observations, we compare the analysis and
diagnostics of a loop after subtracting the background with two different and
independent methods. The dataset includes sequences of images in the 171 A, 195
A filter bands of TRACE. One background subtraction method consists in taking
as background values those obtained from interpolation between concentric
strips around the analyzed loop. The other method is a pixel-to-pixel
subtraction of the final image when the loop had completely faded out, already
used by Reale & Ciaravella 2006. We compare the emission distributions along
the loop obtained with the two methods and find that they are considerably
different. We find differences as well in the related derive filter ratio and
temperature profiles. In particular, the pixel-to-pixel subtraction leads to
coherent diagnostics of a cooling loop. With the other subtraction the
diagnostics are much less clear. The background subtraction is a delicate issue
in the analysis of a loop. The pixel-to-pixel subtraction appears to be more
reliable, but its application is not always possible. Subtraction from
interpolation between surrounding regions can produce higher systematic errors,
because of intersecting structures and of the large amount of subtracted
emission in TRACE observations.Comment: 9 pages, 9 figure
Production and Characterisation of SLID Interconnected n-in-p Pixel Modules with 75 Micrometer Thin Silicon Sensors
The performance of pixel modules built from 75 micrometer thin silicon
sensors and ATLAS read-out chips employing the Solid Liquid InterDiffusion
(SLID) interconnection technology is presented. This technology, developed by
the Fraunhofer EMFT, is a possible alternative to the standard bump-bonding. It
allows for stacking of different interconnected chip and sensor layers without
destroying the already formed bonds. In combination with Inter-Chip-Vias (ICVs)
this paves the way for vertical integration. Both technologies are combined in
a pixel module concept which is the basis for the modules discussed in this
paper.
Mechanical and electrical parameters of pixel modules employing both SLID
interconnections and sensors of 75 micrometer thickness are covered. The
mechanical features discussed include the interconnection efficiency, alignment
precision and mechanical strength. The electrical properties comprise the
leakage currents, tuning characteristics, charge collection, cluster sizes and
hit efficiencies. Targeting at a usage at the high luminosity upgrade of the
LHC accelerator called HL-LHC, the results were obtained before and after
irradiation up to fluences of
(1 MeV neutrons).Comment: 16 pages, 22 figure
Thin n-in-p pixel sensors and the SLID-ICV vertical integration technology for the ATLAS upgrade at the HL-LHC
The R&D activity presented is focused on the development of new modules for
the upgrade of the ATLAS pixel system at the High Luminosity LHC (HL-LHC). The
performance after irradiation of n-in-p pixel sensors of different active
thicknesses is studied, together with an investigation of a novel
interconnection technique offered by the Fraunhofer Institute EMFT in Munich,
the Solid-Liquid-InterDiffusion (SLID), which is an alternative to the standard
solder bump-bonding. The pixel modules are based on thin n-in-p sensors, with
an active thickness of 75 um or 150 um, produced at the MPI Semiconductor
Laboratory (MPI HLL) and on 100 um thick sensors with active edges, fabricated
at VTT, Finland. Hit efficiencies are derived from beam test data for thin
devices irradiated up to a fluence of 4e15 neq/cm^2. For the active edge
devices, the charge collection properties of the edge pixels before irradiation
is discussed in detail, with respect to the inner ones, using measurements with
radioactive sources. Beyond the active edge sensors, an additional ingredient
needed to design four side buttable modules is the possibility of moving the
wire bonding area from the chip surface facing the sensor to the backside,
avoiding the implementation of the cantilever extruding beyond the sensor area.
The feasibility of this process is under investigation with the FE-I3 SLID
modules, where Inter Chip Vias are etched, employing an EMFT technology, with a
cross section of 3 um x 10 um, at the positions of the original wire bonding
pads.Comment: Proceedings for Pixel 2012 Conference, submitted to NIM A, 6 page
3D sensors for the HL-LHC
In order to increase its discovery potential, the Large Hadron Collider (LHC)
accelerator will be upgraded in the next decade. The high luminosity LHC
(HL-LHC) period demands new sensor technologies to cope with increasing
radiation fluences and particle rates. The ATLAS experiment will replace the
entire inner tracking detector with a completely new silicon-only system. 3D
pixel sensors are promising candidates for the innermost layers of the Pixel
detector due to their excellent radiation hardness at low operation voltages
and low power dissipation at moderate temperatures. Recent developments of 3D
sensors for the HL-LHC are presented.Comment: 8 pages, 5 figures, International Workshops on Radiation Imaging
Detectors 201
Amiodarone-induced pulmonary toxicity with an excellent response to treatment
Amiodarone is an anti-arrhythmic drug widely used, but its administration can be associated with several adverse side-effects. Among these, amiodarone-induced pulmonary toxicity (APT) occurs in 4-17% of cases and, if not early diagnosed and treated, may evolve towards pulmonary fibrosis and respiratory failure. A 76 years-old-man went to the hospital for accidental trauma. The patient did not report respiratory symptoms but was suffering from atrial fibrillation treated with amiodarone 200 mg/day from three years (cumulative dose >150 gr). HRCT showed ground-glass opacities and nodules in both lungs. The patient underwent fibreoptic bronchoscopy with BAL. Cytologic examination of BALF sediment put in evidence foamy macrophages. The electronic microscopy revealed into the alveolar macrophages "… the presence of multilamellar intracytoplasmic bodies and lysosomes, loads of lipid material". LFTs showed a restrictive syndrome and an impairment of DLCO. Amiodarone discontinuation and steroid administration led to the regression of radiological lesions and the recovery of lung function. Patients taking amiodarone can experience APT. They should perform a basal chest x-ray with LFTs before starting therapy. Monitoring could reveal early the pulmonary toxicity, and patients can respond favourably to the treatment
- …