41 research outputs found

    Whole blood holding time prior to plasma processing alters microRNA expression profile

    Get PDF
    MicroRNAs (miRNAs) can exhibit aberrant expression under different physiological and pathological conditions. Therefore, differentially expressed circulating miRNAs have been a focus of biomarker discovery research. However, the use of circulating miRNAs comes with challenges which may hinder the reliability for their clinical application. These include varied sample collection protocols, storage times/conditions, sample processing and analysis methods. This study focused on examining the effect of whole blood holding time on the stability of plasma miRNA expression profiles. Whole blood samples were collected from healthy pregnant women and were held at 4°C for 30 min, 2 h, 6 h or 24 h prior to processing for plasma isolation. Plasma RNA was extracted and the expression of 179 miRNAs were analyzed. Unsupervised principal component analysis demonstrated that whole blood holding time was a major source of variation in miRNA expression profiles with 53 of 179 miRNAs showing significant changes in expression. Levels of specific miRNAs previously reported to be associated with pregnancy-associated complications such as hsa-miR-150-5p, hsa-miR-191-5p, and hsa-miR-29a-3p, as well as commonly used endogenous miRNA controls, hsa-miR-16-5p, hsa-miR-25-3p, and hsa-miR-223-3p were significantly altered with increase in blood holding time. Current protocols for plasma-based miRNA profiling for diagnostics describe major differences in whole blood holding periods ranging from immediately after collection to 26 h after. Our results demonstrate holding time can have dramatic effects on analytical reliability and reproducibility. This highlights the importance of standardization of blood holding time prior to processing for plasma in order to minimize introduction of non-biological variance in miRNA profiles

    Maternal plasma miRNAs as potential biomarkers for detecting risk of small-for-gestational-age births

    Get PDF
    Background Small-for-gestational-age fetuses (SGA) (birthweight <10th centile) are at high risk for stillbirth or long-term adverse outcomes. Here, we investigate the ability of circulating maternal plasma miRNAs to determine the risk of SGA births. Methods Maternal plasma samples from 29 women of whom 16 subsequently delivered normally grown babies and 13 delivered SGA (birthweight <5th centile) were selected from a total of 511 women recruited to form a discovery cohort in which expression data for a total of 800 miRNAs was determined using the Nanostring nCounter miRNA assay. Validation by RT-qPCR was performed in an independent cohort. Findings Partial least-squares discriminant analysis (PLS-DA) of the Nanostring nCounter miRNA assay initially identified seven miRNAs at 12–14+6 weeks gestation, which discriminated between SGA cases and controls. Four of these were technically validated by RT-qPCR. Differential expression of two miRNA markers; hsa-miR-374a-5p (p = 0•0176) and hsa-let-7d-5p (p = 0•0036), were validated in an independent population of 95 women (SGA n = 12, Control n = 83). In the validation cohort, which was enriched for SGA cases, the ROC AUCs were 0•71 for hsa-miR-374a-5p, and 0•74 for hsa-let-7d-5p, and 0•77 for the two combined. Interpretation Whilst larger population-wide studies are required to validate their performance, these findings highlight the potential of circulating miRNAs to act as biomarkers for early prediction of SGA births

    Oligonucleotide-templated lateral flow assays for amplification-free sensing of circulating microRNAs

    Get PDF
    Herein we demonstrate the first example of oligonucleotide-templated reaction (OTR) performed on paper, using lateral flow to capture and concentrate specific nucleic acid biomarkers on a test line. Quantitative analysis, using a low-cost benchtop fluorescence reader showed very high specificity down to the single nucleotide level and proved sensitive enough for amplification-free, on-chip, detection of endogenous concentrations of miR-150-5p, a recently identified predictive blood biomarker for preterm birth

    Functional rewiring of G protein-coupled receptor signaling in human labo

    Get PDF
    Current strategies to manage preterm labor center around inhibition of uterine myometrial contractions, yet do not improve neonatal outcomes as they do not address activation of inflammation. Here, we identify that during human labor, activated oxytocin receptor (OTR) reprograms the prostaglandin E2 receptor, EP2, in the pregnant myometrium to suppress relaxatory/Gαs-cAMP signaling and promote pro-labor/inflammatory responses via altered coupling of EP2 from Gαq/11 to Gαi/o. The ability of EP2 to signal via Gαi/o is recapitulated with in vitro OT and only following OTR activation, suggesting direct EP2-OTR crosstalk. Super-resolution imaging with computational modeling reveals OT-dependent reorganization of EP2-OTR complexes to favor conformations for Gαi over Gαs activation. A selective EP2 ligand, PGN9856i, activates the relaxatory/Gαs-cAMP pathway but not the pro-labor/inflammatory responses in term-pregnant myometrium, even following OT. Our study reveals a mechanism, and provides a potential therapeutic solution, whereby EP2-OTR functional associations could be exploited to delay preterm labor

    Cervical length and quantitative fetal fibronectin in the prediction of spontaneous preterm birth in asymptomatic women with congenital uterine anomaly

    Get PDF
    BACKGROUND: Congenital uterine anomalies (CUA) are associated with late miscarriage and spontaneous preterm birth (sPTB). OBJECTIVES: Our aim was to 1) determine the rate of sPTB in each type of CUA and 2) assess the performance of quantitative fetal fibronectin (qfFN) and transvaginal cervical length (CL) measurement by ultrasound in asymptomatic women with CUA for the prediction of sPTB at <34 and <37 weeks of gestation. STUDY DESIGN: This was a retrospective cohort of women with CUA asymptomatic for sPTB, from four UK tertiary referral centres (2001-2016). CUAs were categorised into fusion (unicornuate, didelphic and bicornuate uteri) or resorption defects (septate, with or without resection and arcuate uteri), based on pre-pregnancy diagnosis. All women underwent serial transvaginal ultrasound CL assessment in the second trimester (16 to 24 weeks' gestation); a subgroup underwent qfFN testing from 18 weeks' gestation. We investigated the relationship between CUA and predictive test performance for sPTB before 34 and 37 weeks' gestation. RESULTS: Three hundred and nineteen women were identified as having CUA within our high-risk population. 7% (23/319) delivered spontaneously <34 weeks, and 18% (56/319) <37 weeks' gestation. Rates of sPTB by type were: 26% (7/27) for unicornuate, 21% (7/34) for didelphic, 16% (31/189) for bicornuate, 13% (7/56) for septate and 31% (4/13) for arcuate. 80% (45/56) of women who had sPTB <37 weeks did not develop a short CL (<25 mm) during the surveillance period (16-24 weeks). The diagnostic accuracy of short CL had low sensitivity (20.3) for predicting sPTB <34 weeks. Cervical Length had ROC AUC of 0.56 (95% CI 0.48 to 0.64) and 0.59 (95% CI 0.55 to 0.64) for prediction of sPTB <34 and 37 weeks' respectively. The AUC for CL to predict sPTB <34 weeks was 0.48 for fusion defects (95% CI 0.39 to 0.57) but 0.78 (95% CI 0.66 to 0.91) for women with resorption defects. Overall quantitative fetal fibronectin had a AUC of 0.63 (95% CI 0.49 to 0.77) and 0.58 (95% CI 0.49 to 0.68) for prediction of sPTB <34 and 37 weeks, respectively. AUC for prediction of sPTB <37 weeks with qfFN for fusion defects was 0.52 (95% CI 0.41 to 0.63), but 0.79 (0.63 to 0.95) for women with resorption defects. Results were similar when women with intervention were excluded. CONCLUSION: Commonly used markers CL and qfFN have utility in prediction of sPTB in resorption congenital uterine defects but not in fusion defects. This is contrary to other high-risk populations. These findings need to be accounted for when planning antenatal care and have potential implications for predictive tests used in sPTB surveillance and intervention

    Prospective observational study of vaginal microbiota pre- and post-rescue cervical cerclage

    Get PDF
    Objective To investigate the relation between vaginal microbiota composition and outcome of rescue cervical cerclage. Design Prospective observational study. Setting Queen Charlotte's and Chelsea Hospital, London. Population Twenty singleton pregnancies undergoing a rescue cervical cerclage. Methods Vaginal microbiota composition was analysed in women presenting with a dilated cervix and exposed fetal membranes before and 10 days following rescue cervical cerclage and was correlated with clinical outcomes. Main outcome measures Composition of vaginal bacteria was characterised by culture‐independent next generation sequencing. Successful cerclage was defined as that resulting in the birth of a neonate discharged from hospital without morbidity. Unsuccessful cerclage was defined as procedures culminating in miscarriage, intrauterine death, neonatal death or significant neonatal morbidity. Results Reduced Lactobacillus spp. relative abundance was observed in 40% of cases prior to rescue cerclage compared with 10% of gestation age‐matched controls (8/20, 40% versus 3/30, 10%, P = 0.017). Gardnerella vaginalis was over‐represented in women presenting with symptoms (3/7, 43% versus 0/13, 0%, P = 0.03, linear discriminant analysis, LDA (log 10) and cases culminating in miscarriage (3/6, 50% versus 0/14, 0%, P = 0.017). In the majority of cases (10/14, 71%) bacterial composition was unchanged following cerclage insertion and perioperative interventions. Conclusions Reduced relative abundance of Lactobacillus spp. is associated with premature cervical dilation, whereas high levels of G. vaginalis are associated with unsuccessful rescue cerclage cases. The insertion of a rescue cerclage does not affect the underlying bacterial composition in the majority of cases

    Lateral Flow Test (LFT) detects cell-free microRNAs predictive of preterm birth directly from human plasma

    Get PDF
    Despite extensive research toward the development of point-of-care nucleic acid tests (POC NATs) for the detection of microRNAs (miRs) from liquid biopsies, major hurdles remain including the strict requirement for extensive off-chip sample preprocessing. Herein, a nucleic acid lateral flow test (NALFT) is reported on that enables the direct detection of endogenous miRs from as little as 3 μL of plasma without the requirement for any enzyme-catalyzed target amplification or complex miR extraction steps. This is achieved through integration of a denaturing hydrogel composite material onto the LFT, allowing for near-instantaneous on-chip release of miRs from their carriers (extracellular vesicles or transport proteins) prior to detection. This next-generation LFT is sensitive enough to detect endogenous concentrations of miR-150-5p, a predictive biomarker for preterm birth (PTB) found deregulated in maternal blood from as early as 12th week of pregnancy. Herein, a key step is represented toward a first bedside test for risk-stratification during pregnancy by predicting true outcome at a very early stage. More generally, the universal and versatile nature of this novel sample preprocessing platform can further improve the robustness of existing NALFTs and facilitate their application at the POC

    Microbial-driven preterm labour involves crosstalk between the innate and adaptive immune response

    Get PDF
    There has been a surge in studies implicating a role of vaginal microbiota in spontaneous preterm birth (sPTB), but most are associative without mechanistic insight. Here we show a comprehensive approach to understand the causative factors of preterm birth, based on the integration of longitudinal vaginal microbiota and cervicovaginal fluid (CVF) immunophenotype data collected from 133 women at high-risk of sPTB. We show that vaginal depletion of Lactobacillus species and high bacterial diversity leads to increased mannose binding lectin (MBL), IgM, IgG, C3b, C5, IL-8, IL-6 and IL-1β and to increased risk of sPTB. Cervical shortening, which often precedes preterm birth, is associated with Lactobacillus iners and elevated levels of IgM, C3b, C5, C5a and IL-6. These data demonstrate a role for the complement system in microbial-driven sPTB and provide a scientific rationale for the development of live biotherapeutics and complement therapeutics to prevent sPTB

    Functional rewiring of G protein-coupled receptor signaling in human labor

    Get PDF
    Current strategies to manage preterm labor center around inhibition of uterine myometrial contractions, yet do not improve neonatal outcomes as they do not address activation of inflammation. Here, we identify that during human labor, activated oxytocin receptor (OTR) reprograms the prostaglandin E2 receptor, EP2, in the pregnant myometrium to suppress relaxatory/Gαs-cAMP signaling and promote pro-labor/inflammatory responses via altered coupling of EP2 from Gαq/11 to Gαi/o. The ability of EP2 to signal via Gαi/o is recapitulated with in vitro OT and only following OTR activation, suggesting direct EP2-OTR crosstalk. Super-resolution imaging with computational modeling reveals OT-dependent reorganization of EP2-OTR complexes to favor conformations for Gαi over Gαs activation. A selective EP2 ligand, PGN9856i, activates the relaxatory/Gαs-cAMP pathway but not the pro-labor/inflammatory responses in term-pregnant myometrium, even following OT. Our study reveals a mechanism, and provides a potential therapeutic solution, whereby EP2-OTR functional associations could be exploited to delay preterm labor

    Nuclear Factor Kappa B Activation Occurs in the Amnion Prior to Labour Onset and Modulates the Expression of Numerous Labour Associated Genes

    Get PDF
    Background: Prior to the onset of human labour there is an increase in the synthesis of prostaglandins, cytokines and chemokines in the fetal membranes, particular the amnion. This is associated with activation of the transcription factor nuclear factor kappa B (NFkB). In this study we characterised the level of NFkB activity in amnion epithelial cells as a measure of amnion activation in samples collected from women undergoing caesarean section at 39 weeks gestation prior to the onset of labour. Methodology/Principal Findings: We found that a proportion of women exhibit low or moderate NFkB activity while other women exhibit high levels of NFkB activity (n = 12). This activation process does not appear to involve classical pathways of NFkB activation but rather is correlated with an increase in nuclear p65-Rel-B dimers. To identify the full range of genes upregulated in association with amnion activation, microarray analysis was performed on carefully characterised nonactivated amnion (n = 3) samples and compared to activated samples (n = 3). A total of 919 genes were upregulated in response to amnion activation including numerous inflammatory genes such cyclooxygenase-2 (COX-2, 44-fold), interleukin 8 (IL-8, 6-fold), IL-1 receptor accessory protein (IL-1RAP, 4.5-fold), thrombospondin 1 (TSP-1, 3-fold) and, unexpectedly, oxytocin receptor (OTR, 24-fold). Ingenuity Pathway Analysis of the microarray data reveal the two main gene networks activated concurrently with amnion activation are i) cell death, cancer and morphology and ii) cell cycle, embryoni
    corecore