32 research outputs found

    A heat pump at a molecular scale controlled by a mechanical force

    Full text link
    We show that a mesoscopic system such as Feynman's ratchet may operate as a heat pump, and clarify a underlying physical picture. We consider a system of a particle moving along an asymmetric periodic structure . When put into a contact with two distinct heat baths of equal temperature, the system transfers heat between two baths as the particle is dragged. We examine Onsager relation for the heat flow and the particle flow, and show that the reciprocity coefficient is a product of the characteristic heat and the diffusion constant of the particle. The characteristic heat is the heat transfer between the baths associated with a barrier-overcoming process. Because of the correlation between the heat flow and the particle flow, the system can work as a heat pump when the particle is dragged. This pump is particularly effective at molecular scales where the energy barrier is of the order of the thermal energy.Comment: 7 pages, 5 figures; revise

    Hidden heat transfer in equilibrium states implies directed motion in nonequilibrium states

    Full text link
    We study a class of heat engines including Feynman's ratchet, which exhibits a directed motion of a particle in nonequilibrium steady states maintained by two heat baths. We measure heat transfer from each heat bath separately, and average them using a careful procedure that reveals the nature of the heat transfer associated with directed steps of the particle. Remarkably we find that steps are associated with nonvanishing heat transfer even in equilibrium, and there is a quantitative relation between this ``hidden heat transfer'' and the directed motion of the particle. This relation is clearly understood in terms of the ``principle of heat transfer enhancement'', which is expected to apply to a large class of highly nonequilibrium systems.Comment: 4 pages, 4 figures; revise

    An expression for stationary distribution in nonequilibrium steady state

    Full text link
    We study the nonequilibrium steady state realized in a general stochastic system attached to multiple heat baths and/or driven by an external force. Starting from the detailed fluctuation theorem we derive concise and suggestive expressions for the corresponding stationary distribution which are correct up to the second order in thermodynamic forces. The probability of a microstate η\eta is proportional to exp[Φ(η)]\exp[{\Phi}(\eta)] where Φ(η)=kβkEk(η){\Phi}(\eta)=-\sum_k\beta_k\mathcal{E}_k(\eta) is the excess entropy change. Here Ek(η)\mathcal{E}_k(\eta) is the difference between two kinds of conditioned path ensemble averages of excess heat transfer from the kk-th heat bath whose inverse temperature is βk\beta_k. Our expression may be verified experimentally in nonequilibrium states realized, for example, in mesoscopic systems.Comment: 4 pages, 2 figure

    Entropy and Nonlinear Nonequilibrium Thermodynamic Relation for Heat Conducting Steady States

    Full text link
    Among various possible routes to extend entropy and thermodynamics to nonequilibrium steady states (NESS), we take the one which is guided by operational thermodynamics and the Clausius relation. In our previous study, we derived the extended Clausius relation for NESS, where the heat in the original relation is replaced by its "renormalized" counterpart called the excess heat, and the Gibbs-Shannon expression for the entropy by a new symmetrized Gibbs-Shannon-like expression. Here we concentrate on Markov processes describing heat conducting systems, and develop a new method for deriving thermodynamic relations. We first present a new simpler derivation of the extended Clausius relation, and clarify its close relation with the linear response theory. We then derive a new improved extended Clausius relation with a "nonlinear nonequilibrium" contribution which is written as a correlation between work and heat. We argue that the "nonlinear nonequilibrium" contribution is unavoidable, and is determined uniquely once we accept the (very natural) definition of the excess heat. Moreover it turns out that to operationally determine the difference in the nonequilibrium entropy to the second order in the temperature difference, one may only use the previous Clausius relation without a nonlinear term or must use the new relation, depending on the operation (i.e., the path in the parameter space). This peculiar "twist" may be a clue to a better understanding of thermodynamics and statistical mechanics of NESS.Comment: 31 pages, 4 figure
    corecore