45 research outputs found

    Thrombus Imaging Characteristics to Predict Early Recanalization in Anterior Circulation Large Vessel Occlusion Stroke

    Get PDF
    The early management of transferred patients with a large vessel occlusion (LVO) stroke could be improved by identifying patients who are likely to recanalize early. We aim to predict early recanalization based on patient clinical and thrombus imaging characteristics. We included 81 transferred anterior-circulation LVO patients with an early recanalization, defined as the resolution of the LVO or the migration to a distal location not reachable with endovascular treatment upon repeated radiological imaging. We compared their clinical and imaging characteristics with all (322) transferred patients with a persistent LVO in the MR CLEAN Registry. We measured distance from carotid terminus to thrombus (DT), thrombus length, density, and perviousness on baseline CT images. We built logistic regression models to predict early recanalization. We validated the predictive ability by computing the median area-under-the-curve (AUC) of the receiver operating characteristics curve for 100 5-fold cross-validations. The administration of intravenous thrombolysis (IVT), longer transfer times, more distal occlusions, and shorter, pervious, less dense thrombi were characteristic of early recanalization. After backward elimination, IVT administration, DT and thrombus density remained in the multivariable model, with an AUC of 0.77 (IQR 0.72–0.83). Baseline thrombus imaging characteristics are valuable in predicting early recanalization and can potentially be used to optimize repeated imaging workflow.</p

    Thrombus Imaging Characteristics to Predict Early Recanalization in Anterior Circulation Large Vessel Occlusion Stroke

    Get PDF
    The early management of transferred patients with a large vessel occlusion (LVO) stroke could be improved by identifying patients who are likely to recanalize early. We aim to predict early recanalization based on patient clinical and thrombus imaging characteristics. We included 81 transferred anterior-circulation LVO patients with an early recanalization, defined as the resolution of the LVO or the migration to a distal location not reachable with endovascular treatment upon repeated radiological imaging. We compared their clinical and imaging characteristics with all (322) transferred patients with a persistent LVO in the MR CLEAN Registry. We measured distance from carotid terminus to thrombus (DT), thrombus length, density, and perviousness on baseline CT images. We built logistic regression models to predict early recanalization. We validated the predictive ability by computing the median area-under-the-curve (AUC) of the receiver operating characteristics curve for 100 5-fold cross-validations. The administration of intravenous thrombolysis (IVT), longer transfer times, more distal occlusions, and shorter, pervious, less dense thrombi were characteristic of early recanalization. After backward elimination, IVT administration, DT and thrombus density remained in the multivariable model, with an AUC of 0.77 (IQR 0.72–0.83). Baseline thrombus imaging characteristics are valuable in predicting early recanalization and can potentially be used to optimize repeated imaging workflow.</p

    Association of thrombus density and endovascular treatment outcomes in patients with acute ischemic stroke due to M1 occlusions

    Get PDF
    PURPOSE: We aimed to study the association of non-contrast CT (NCCT) thrombus density with procedural and clinical outcomes in patients with acute ischemic stroke who underwent endovascular treatment (EVT). Since thrombus density is associated with thrombus location, we focused on M1 occlusions only.METHODS: Patients with available thin-slice (&lt; 2.5 mm) NCCT were included from a nationwide registry. Regression models were used to assess the relation between thrombus density (per Hounsfield unit [HU]) and the following outcomes. For reperfusion grade, adjusted common odds ratios (acOR) indicated a 1-step shift towards improved outcome per HU increase in thrombus density. For the binary outcomes of first-pass reperfusion (first-pass extended thrombolysis in cerebral infarction [eTICI] 2C-3, FPR), functional independence [90-day modified Rankin Scale (mRS) score of 0-2] and mortality), aORs were reported. Adjusted β coefficients (aβ) were reported for 24-h NIHSS and procedure duration in minutes. Outcome differences between first-line treatment devices (stent retriever versus aspiration) were assessed with interaction terms.RESULTS: In 566 patients with M1 occlusions, thrombus density was not associated with reperfusion (acOR 1.01, 95% CI 0.99-1.02), FPR (aOR 1.01, 95% CI 0.99-1.03), mortality (aOR 0.98, 95% CI 0.95-1.00), 24-h NIHSS (aβ - 0.7%, 95% CI - 1.4-0.2), or procedure duration (aβ 0.27, 95% CI - 0.05-0.58). In multivariable analysis, thrombus density was associated with functional independence (aOR 1.02, 95% CI 1.00-1.05). No interaction was found between thrombus density and first-line treatment device for any outcome.CONCLUSION: In patients with M1 occlusions, thrombus density was not clearly associated with procedural and clinical outcomes after EVT.</p

    Value of Automatically Derived Full Thrombus Characteristics:An Explorative Study of Their Associations with Outcomes in Ischemic Stroke Patients

    Get PDF
    (1) Background: For acute ischemic strokes caused by large vessel occlusion, manually assessed thrombus volume and perviousness have been associated with treatment outcomes. However, the manual assessment of these characteristics is time-consuming and subject to inter-observer bias. Alternatively, a recently introduced fully automated deep learning-based algorithm can be used to consistently estimate full thrombus characteristics. Here, we exploratively assess the value of these novel biomarkers in terms of their association with stroke outcomes. (2) Methods: We studied two applications of automated full thrombus characterization as follows: one in a randomized trial, MR CLEAN-NO IV (n = 314), and another in a Dutch nationwide registry, MR CLEAN Registry (n = 1839). We used an automatic pipeline to determine the thrombus volume, perviousness, density, and heterogeneity. We assessed their relationship with the functional outcome defined as the modified Rankin Scale (mRS) at 90 days and two technical success measures as follows: successful final reperfusion, which is defined as an eTICI score of 2b-3, and successful first-pass reperfusion (FPS). (3) Results: Higher perviousness was significantly related to a better mRS in both MR CLEAN-NO IV and the MR CLEAN Registry. A lower thrombus volume and lower heterogeneity were only significantly related to better mRS scores in the MR CLEAN Registry. Only lower thrombus heterogeneity was significantly related to technical success; it was significantly related to a higher chance of FPS in the MR CLEAN-NO IV trial (OR = 0.55, 95% CI: 0.31–0.98) and successful reperfusion in the MR CLEAN Registry (OR = 0.88, 95% CI: 0.78–0.99). (4) Conclusions: Thrombus characteristics derived from automatic entire thrombus segmentations are significantly related to stroke outcomes.</p

    A simplified mesoscale 3D model for characterizing fibrinolysis under flow conditions

    Get PDF
    One of the routine clinical treatments to eliminate ischemic stroke thrombi is injecting a biochemical product into the patient’s bloodstream, which breaks down the thrombi’s fibrin fibers: intravenous or intravascular thrombolysis. However, this procedure is not without risk for the patient; the worst circumstances can cause a brain hemorrhage or embolism that can be fatal. Improvement in patient management drastically reduced these risks, and patients who benefited from thrombolysis soon after the onset of the stroke have a significantly better 3-month prognosis, but treatment success is highly variable. The causes of this variability remain unclear, and it is likely that some fundamental aspects still require thorough investigations. For that reason, we conducted in vitro flow-driven fibrinolysis experiments to study pure fibrin thrombi breakdown in controlled conditions and observed that the lysis front evolved non-linearly in time. To understand these results, we developed an analytical 1D lysis model in which the thrombus is considered a porous medium. The lytic cascade is reduced to a second-order reaction involving fibrin and a surrogate pro-fibrinolytic agent. The model was able to reproduce the observed lysis evolution under the assumptions of constant fluid velocity and lysis occurring only at the front. For adding complexity, such as clot heterogeneity or complex flow conditions, we propose a 3-dimensional mesoscopic numerical model of blood flow and fibrinolysis, which validates the analytical model’s results. Such a numerical model could help us better understand the spatial evolution of the thrombi breakdown, extract the most relevant physiological parameters to lysis efficiency, and possibly explain the failure of the clinical treatment. These findings suggest that even though real-world fibrinolysis is a complex biological process, a simplified model can recover the main features of lysis evolution.</p

    Impact of the Internal Carotid Artery Morphology on in silico Stent-Retriever Thrombectomy Outcome

    Get PDF
    The aim of this work is to propose a methodology for identifying relationships between morphological features of the cerebral vasculature and the outcome of in silico simulations of thrombectomy, the mechanical treatment for acute ischemic stroke. Fourteen patient-specific cerebral vasculature segmentations were collected and used for geometric characterization of the intracranial arteries mostly affected by large vessel occlusions, i.e., internal carotid artery (ICA), middle cerebral artery (MCA) and anterior cerebral artery (ACA). First, a set of global parameters was created, including the geometrical information commonly provided in the clinical context, namely the total length, the average diameter and the tortuosity (length over head-tail distance) of the intracranial ICA. Then, a more exhaustive geometrical analysis was performed to collect a set of local parameters. A total of 27 parameters was measured from each patient-specific vascular configuration. Fourteen virtual thrombectomy simulations were performed with a blood clot with the same length and composition placed in the middle of the MCA. The model of TREVO ProVue stent-retriever was used for all the simulations. Results from simulations produced five unsuccessful outcomes, i.e., the clot was not removed from the vessels. The geometric parameters of the successful and unsuccessful simulations were compared to find relations between the vascular geometry and the outcome. None of the global parameters alone or combined proved able to discriminate between positive and negative outcome, while a combination of local parameters allowed to correctly identify the successful from the unsuccessful simulations. Although these results are limited by the number of patients considered, this study indicates a promising methodology to relate patient-specific geometry to virtual thrombectomy outcome, which might eventually guide decision making in the treatment of acute ischemic stroke

    Modelling the leptomeningeal collateral circulation during acute ischaemic stroke

    No full text
    A novel model of the leptomeningeal collateral circulation is created by combining data from multiple sources with statistical scaling laws. The extent of the collateral circulation is varied by defining a collateral vessel probability. Blood flow and pressure are simulated using a one-dimensional steady state blood flow model. The leptomeningeal collateral vessels provide significant flow during a stroke. The pressure drop over an occlusion predicted by the model ranges between 60 and 85 mmHg depending on the extent of the collateral circulation. The linear transport of contrast material was simulated in the circulatory network. The time delay of peak contrast over an occlusion is 3.3 s in the model, and 2.1 s (IQR 0.8–4.0 s) when measured in dynamic CTA data of acute ischaemic stroke patients. Modelling the leptomeningeal collateral circulation could lead to better estimates of infarct volume and patient outcome

    Modelling collateral flow and thrombus permeability during acute ischaemic stroke

    No full text
    The presence of collaterals and high thrombus permeability are associated with good functional outcomes after an acute ischaemic stroke. We aim to understand the combined effect of the collaterals and thrombus permeability on cerebral blood flow during an acute ischaemic stroke. A cerebral blood flow model including the leptomeningeal collateral circulation is used to simulate cerebral blood flow during an acute ischaemic stroke. The collateral circulation is varied to capture the collateral scores: absent, poor, moderate and good. Measurements of the transit time, void fraction and thrombus length in acute ischaemic stroke patients are used to estimate thrombus permeability. Estimated thrombus permeability ranges between 10-7 and 10-4 mm2. Measured flow rates through the thrombus are small and the effect of a permeable thrombus on brain perfusion during stroke is small compared with the effect of collaterals. Our simulations suggest that the collaterals are a dominant factor in the resulting infarct volume after a stroke

    Modelling collateral flow and thrombus permeability during acute ischaemic stroke

    No full text
    The presence of collaterals and high thrombus permeability are associated with good functional outcomes after an acute ischaemic stroke. We aim to understand the combined effect of the collaterals and thrombus permeability on cerebral blood flow during an acute ischaemic stroke. A cerebral blood flow model including the leptomeningeal collateral circulation is used to simulate cerebral blood flow during an acute ischaemic stroke. The collateral circulation is varied to capture the collateral scores: absent, poor, moderate and good. Measurements of the transit time, void fraction and thrombus length in acute ischaemic stroke patients are used to estimate thrombus permeability. Estimated thrombus permeability ranges between 10-7 and 10-4 mm2. Measured flow rates through the thrombus are small and the effect of a permeable thrombus on brain perfusion during stroke is small compared with the effect of collaterals. Our simulations suggest that the collaterals are a dominant factor in the resulting infarct volume after a stroke
    corecore