700 research outputs found
Interactions In Space For Archaeological Models
In this article we examine a variety of quantitative models for describing
archaeological networks, with particular emphasis on the maritime networks of
the Aegean Middle Bronze Age. In particular, we discriminate between those
gravitational networks that are most likely (maximum entropy) and most
efficient (best cost/benefit outcomes).Comment: 21 pages, 6 figures, 2 tables. Contribution to special issue of
Advances in Complex Systems from the conference `Cultural Evolution in
Spatially Structured Populations', UCL, London, September 2010. To appear in
Advances in Complex System
The promotion of stress tolerant Symbiodiniaceae dominance in juveniles of two coral species under simulated future conditions of ocean warming and acidification
The symbiotic relationship between coral and its endosymbiotic algae, Symbiodiniaceae, greatly influences the hosts’ potential to withstand environmental stress. To date, the effects of climate change on this relationship has primarily focused on adult corals. Uncovering the effects of environmental stress on the establishment and development of this symbiosis in early life stages is critical for predicting how corals may respond to climate change. To determine the impacts of future climate projections on the establishment of symbionts in juvenile corals, ITS2 amplicon sequencing of single coral juveniles was applied to Goniastrea retiformis and Acropora millepora before and after exposure to three climate conditions of varying temperature and pCO2 levels (current and RCP8.5 in 2050 and 2100). Compared to ambient conditions, juvenile corals experienced shuffling in the relative abundance of Cladocopium (C1m, decrease) to Durusdinium (D1 and D1a, increase) over time. We calculated a novel risk metric incorporating functional redundancy and likelihood of impact on host physiology to identify the loss of D1a as a “low risk” to the coral compared to the loss of “higher risk” taxa like D1 and C1m. Although the increase in stress tolerant Durusdinium under future warming was encouraging for A. millepora, by 2100, G. retiformis communities displayed signs of symbiosis de-regulation, suggesting this acclimatory mechanism may have species-specific thresholds. Whilst this study cannot specifically disentangle the individual effects of temperature and pCO2, it does provide valuable insights into the impacts of both stressors combined. These results emphasize the need for understanding of long-term effects of climate change induced stress on coral juveniles, and their potential for increased acclimation to heat tolerance through changes in symbiosis
On the fluctuations of jamming coverage upon random sequential adsorption on homogeneous and heterogeneous media
The fluctuations of the jamming coverage upon Random Sequential Adsorption
(RSA) are studied using both analytical and numerical techniques. Our main
result shows that these fluctuations (characterized by )
decay with the lattice size according to the power-law . The exponent depends on the dimensionality of
the substrate and the fractal dimension of the set where the RSA process
actually takes place () according to .This
theoretical result is confirmed by means of extensive numerical simulations
applied to the RSA of dimers on homogeneous and stochastic fractal substrates.
Furthermore, our predictions are in excellent agreement with different previous
numerical results.
It is also shown that, studying correlated stochastic processes, one can
define various fluctuating quantities designed to capture either the underlying
physics of individual processes or that of the whole system. So, subtle
differences in the definitions may lead to dramatically different physical
interpretations of the results. Here, this statement is demonstrated for the
case of RSA of dimers on binary alloys.Comment: 20 pages, 8 figure
High Level of Perforin Expression Is Required for Effective Correction of Hemophagocytic Lymphohistiocytosis
Perforin-1 mutations result in a potentially fatal hemophagocytic lymphohistiocytosis (HLH) with heightened immune activation, hypercytokinemia, pancytopenia, and end-organ damage. At present, hematopoietic stem cell (HSC) transplantation is curative, but limited by donor availability and associated mortality, making gene therapy an attractive alternative approach for HLH. We reported that perforin expression driven by cellular promoters in lentiviral (LV) vectors resulted in significant, albeit partial, correction of the inflammatory features in a murine model of HLH. We hypothesized that the level of perforin expression achieved per cell from ectopic moderate-strength cellular promoters (phosphoglycerate kinase gene/perforin-1 gene) is inadequate and thus engineered an LV vector using a viral promoter (MND; a modified Moloney murine leukemia virus long terminal repeat with myeloproliferative sarcoma virus enhancer) containing microRNA126 target sequences to restrict perforin expression in HSCs. We show here that the MND-LV vector restored perforin expression to normal levels in a perforin-deficient human natural killer cell line and perforin gene-corrected Perforin1(-/-) transplant recipients, whereas cellular promoters drove only partial correction. On lymphocytic choriomeningitis virus challenge, the clinical scores and survival improved only with the MND-LV vector, but inflammatory markers and cytotoxicity were improved with all LV vectors. Our studies suggest that although moderate levels of expression can result in partial amelioration of the HLH phenotype, high levels of perforin expression per cell are required for complete correction of HLH
Randomized, Controlled Trial of the Long Term Safety, Immunogenicity and Efficacy of RTS,S/AS02(D) Malaria Vaccine in Infants Living in a Malaria-Endemic Region.
The RTS,S/AS malaria candidate vaccine is being developed with the intent to be delivered, if approved, through the Expanded Programme on Immunization (EPI) of the World Health Organization. Safety, immunogenicity and efficacy of the RTS,S/AS02(D) vaccine candidate when integrated into a standard EPI schedule for infants have been reported over a nine-month surveillance period. This paper describes results following 20 months of follow up. This Phase IIb, single-centre, randomized controlled trial enrolled 340 infants in Tanzania to receive three doses of RTS,S/AS02(D) or hepatitis B vaccine at 8, 12, and 16 weeks of age. All infants also received DTPw/Hib (diphtheria and tetanus toxoids, whole-cell pertussis vaccine, conjugated Haemophilus influenzae type b vaccine) at the same timepoints. The study was double-blinded to month 9 and single-blinded from months 9 to 20. From month 0 to 20, at least one SAE was reported in 57/170 infants who received RTS,S/AS02(D) (33.5%; 95% confidence interval [CI]: 26.5, 41.2) and 62/170 infants who received hepatitis B vaccine (36.5%; 95% CI: 29.2, 44.2). The SAE profile was similar in both vaccine groups; none were considered to be related to vaccination. At month 20, 18 months after completion of vaccination, 71.8% of recipients of RTS,S/AS02(D) and 3.8% of recipients of hepatitis B vaccine had seropositive titres for anti-CS antibodies; seroprotective levels of anti-HBs antibodies remained in 100% of recipients of RTS,S/AS02(D) and 97.7% recipients of hepatitis B vaccine. Anti-HBs antibody GMTs were higher in the RTS,S/AS02(D) group at all post-vaccination time points compared to control. According to protocol population, vaccine efficacy against multiple episodes of malaria disease was 50.7% (95% CI: -6.5 to 77.1, p = 0.072) and 26.7% (95% CI: -33.1 to 59.6, p = 0.307) over 12 and 18 months post vaccination, respectively. In the Intention to Treat population, over the 20-month follow up, vaccine efficacy against multiple episodes of malaria disease was 14.4% (95% CI: -41.9 to 48.4, p = 0.545). The acceptable safety profile and good tolerability of RTS,S/AS02(D) in combination with EPI vaccines previously reported from month 0 to 9 was confirmed over a 20 month surveillance period in this infant population. Antibodies against both CS and HBsAg in the RTS,S/AS02(D) group remained significantly higher compared to control for the study duration. Over 18 months follow up, RTS,S/AS02(D) prevented approximately a quarter of malaria cases in the study population. CLINICAL TRIALS: Gov identifier: NCT00289185
Analysis of the rotation period of asteroids (1865) Cerberus, (2100) Ra-Shalom, and (3103) Eger - search for the YORP effect
The spin state of small asteroids can change on a long timescale by the
Yarkovsky-O'Keefe-Radzievskii-Paddack (YORP) effect, the net torque that arises
from anisotropically scattered sunlight and proper thermal radiation from an
irregularly-shaped asteroid. The secular change in the rotation period caused
by the YORP effect can be detected by analysis of asteroid photometric
lightcurves. We analyzed photometric lightcurves of near-Earth asteroids (1865)
Cerberus, (2100) Ra-Shalom, and (3103) Eger with the aim to detect possible
deviations from the constant rotation caused by the YORP effect. We carried out
new photometric observations of the three asteroids, combined the new
lightcurves with archived data, and used the lightcurve inversion method to
model the asteroid shape, pole direction, and rotation rate. The YORP effect
was modeled as a linear change in the rotation rate in time d\omega /dt. Values
of d\omega/ dt derived from observations were compared with the values
predicted by theory. We derived physical models for all three asteroids. We had
to model Eger as a nonconvex body because the convex model failed to fit the
lightcurves observed at high phase angles. We probably detected the
acceleration of the rotation rate of Eger d\omega / dt = (1.4 +/- 0.6) x
10^{-8} rad/d (3\sigma error), which corresponds to a decrease in the rotation
period by 4.2 ms/yr. The photometry of Cerberus and Ra-Shalom was consistent
with a constant-period model, and no secular change in the spin rate was
detected. We could only constrain maximum values of |d\omega / dt| < 8 x
10^{-9} rad/d for Cerberus, and |d\omega / dt| < 3 x 10^{-8} rad/d for
Ra-Shalom
Resolving the ancestry of Austronesian-speaking populations
There are two very different interpretations of the prehistory of Island Southeast Asia (ISEA), with genetic evidence invoked in support of both. The “out-of-Taiwan” model proposes a major Late Holocene expansion of Neolithic Austronesian speakers from Taiwan. An alternative, proposing that Late Glacial/postglacial sea-level rises triggered largely autochthonous dispersals, accounts for some otherwise enigmatic genetic patterns, but fails to explain the Austronesian language dispersal. Combining mitochondrial DNA (mtDNA), Y-chromosome and genome-wide data, we performed the most comprehensive analysis of the region to date, obtaining highly consistent results across all three systems and allowing us to reconcile the models. We infer a primarily common ancestry for Taiwan/ISEA populations established before the Neolithic, but also detected clear signals of two minor Late Holocene migrations, probably representing Neolithic input from both Mainland Southeast Asia and South China, via Taiwan. This latter may therefore have mediated the Austronesian language dispersal, implying small-scale migration and language shift rather than large-scale expansion
Fast variability from black-hole binaries
Currently available information on fast variability of the X-ray emission
from accreting collapsed objects constitutes a complex phenomenology which is
difficult to interpret. We review the current observational standpoint for
black-hole binaries and survey models that have been proposed to interpret it.
Despite the complex structure of the accretion flow, key observational
diagnostics have been identified which can provide direct access to the
dynamics of matter motions in the close vicinity of black holes and thus to the
some of fundamental properties of curved spacetimes, where strong-field general
relativistic effects can be observed.Comment: 20 pages, 11 figures. Accepted for publication in Space Science
Reviews. Also to appear in hard cover in the Space Sciences Series of ISSI
"The Physics of Accretion onto Black Holes" (Springer Publisher
Overt and Latent Cardiac Effects of Ozone Inhalation in Rats: Evidence for Autonomic Modulation and Increased Myocardial Vulnerability
Background: Ozone (O3) is a well-documented respiratory oxidant, but increasing epidemiological evidence points to extrapulmonary effects, including positive associations between ambient O3 concentrations and cardiovascular morbidity and mortality
- …