145 research outputs found

    Resolution of the Nested Hierarchy for Rational sl(n) Models

    Full text link
    We construct Drinfel'd twists for the rational sl(n) XXX-model giving rise to a completely symmetric representation of the monodromy matrix. We obtain a polarization free representation of the pseudoparticle creation operators figuring in the construction of the Bethe vectors within the framework of the quantum inverse scattering method. This representation enables us to resolve the hierarchy of the nested Bethe ansatz for the sl(n) invariant rational Heisenberg model. Our results generalize the findings of Maillet and Sanchez de Santos for sl(2) models.Comment: 25 pages, no figure

    On a q-extension of Mehta's eigenvectors of the finite Fourier transform for q a root of unity

    Get PDF
    It is shown that the continuous q-Hermite polynomials for q a root of unity have simple transformation properties with respect to the classical Fourier transform. This result is then used to construct q-extended eigenvectors of the finite Fourier transform in terms of these polynomials.Comment: 12 pages, thoroughly rewritten, the q-extended eigenvectors now N-periodic with q an M-th root of

    Form factor expansion for thermal correlators

    Get PDF
    We consider finite temperature correlation functions in massive integrable Quantum Field Theory. Using a regularization by putting the system in finite volume, we develop a novel approach (based on multi-dimensional residues) to the form factor expansion for thermal correlators. The first few terms are obtained explicitly in theories with diagonal scattering. We also discuss the validity of the LeClair-Mussardo proposal.Comment: 41 pages; v2: minor corrections, v3: minor correction

    Traces on the Sklyanin algebra and correlation functions of the eight-vertex model

    Full text link
    We propose a conjectural formula for correlation functions of the Z-invariant (inhomogeneous) eight-vertex model. We refer to this conjecture as Ansatz. It states that correlation functions are linear combinations of products of three transcendental functions, with theta functions and derivatives as coefficients. The transcendental functions are essentially logarithmic derivatives of the partition function per site. The coefficients are given in terms of a linear functional on the Sklyanin algebra, which interpolates the usual trace on finite dimensional representations. We establish the existence of the functional and discuss the connection to the geometry of the classical limit. We also conjecture that the Ansatz satisfies the reduced qKZ equation. As a non-trivial example of the Ansatz, we present a new formula for the next-nearest neighbor correlation functions.Comment: 35 pages, 2 figures, final versio

    Polyhedral Cosmic Strings

    Full text link
    Quantum field theory is discussed in M\"obius corner kaleidoscopes using the method of images. The vacuum average of the stress-energy tensor of a free field is derived and is shown to be a simple sum of straight cosmic string expressions, the strings running along the edges of the corners. It does not seem possible to set up a spin-half theory easily.Comment: 15 pages, 4 text figures not include

    Antiperiodic dynamical 6-vertex model I: Complete spectrum by SOV, matrix elements of the identity on separate states and connections to the periodic 8-vertex model

    Full text link
    The spin-1/2 highest weight representations of the dynamical 6-vertex and the standard 8-vertex Yang-Baxter algebra on a finite chain are considered in this paper. For the antiperiodic dynamical 6-vertex transfer matrix defined on chains with an odd number of sites, we adapt the Sklyanin's quantum separation of variable (SOV) method and explicitly construct SOV representations from the original space of representations. We provide the complete characterization of eigenvalues and eigenstates proving also the simplicity of its spectrum. Moreover, we characterize the matrix elements of the identity on separated states by determinant formulae. The matrices entering in these determinants have elements given by sums over the SOV spectrum of the product of the coefficients of separate states. This SOV analysis is not reduced to the case of the elliptic roots of unit and the results here derived define the required setup to extend to the dynamical 6-vertex model the approach recently developed in [1]-[5] to compute the form factors of the local operators in the SOV framework, these results will be presented in a future publication. For the periodic 8-vertex transfer matrix, we prove that its eigenvalues have to satisfy a fixed system of equations. In the case of a chain with an odd number of sites, this system of equations is the same entering in the SOV characterization of the antiperiodic dynamical 6-vertex transfer matrix spectrum. This implies that the set of the periodic 8-vertex eigenvalues is contained in the set of the antiperiodic dynamical 6-vertex eigenvalues. A criterion is introduced to find simultaneous eigenvalues of these two transfer matrices and associate to any of such eigenvalues one nonzero eigenstate of the periodic 8-vertex transfer matrix by using the SOV results. Moreover, a preliminary discussion on the degeneracy of the periodic 8-vertex spectrum is also presented.Comment: 36 pages, main modifications in section 3 and one appendix added, no result modified for the dynamical 6-vertex transfer matrix spectrum and the matrix elements of identity on separate states for chains with an odd number of site

    Symmetry Decomposition of Chaotic Dynamics

    Full text link
    Discrete symmetries of dynamical flows give rise to relations between periodic orbits, reduce the dynamics to a fundamental domain, and lead to factorizations of zeta functions. These factorizations in turn reduce the labor and improve the convergence of cycle expansions for classical and quantum spectra associated with the flow. In this paper the general formalism is developed, with the NN-disk pinball model used as a concrete example and a series of physically interesting cases worked out in detail.Comment: CYCLER Paper 93mar01

    Form factor approach to dynamical correlation functions in critical models

    Full text link
    We develop a form factor approach to the study of dynamical correlation functions of quantum integrable models in the critical regime. As an example, we consider the quantum non-linear Schr\"odinger model. We derive long-distance/long-time asymptotic behavior of various two-point functions of this model. We also compute edge exponents and amplitudes characterizing the power-law behavior of dynamical response functions on the particle/hole excitation thresholds. These last results confirm predictions based on the non-linear Luttinger liquid method. Our results rely on a first principles derivation, based on the microscopic analysis of the model, without invoking, at any stage, some correspondence with a continuous field theory. Furthermore, our approach only makes use of certain general properties of the model, so that it should be applicable, with possibly minor modifications, to a wide class of (not necessarily integrable) gapless one dimensional Hamiltonians.Comment: 33 page

    Wigner Functions and Separability for Finite Systems

    Full text link
    A discussion of discrete Wigner functions in phase space related to mutually unbiased bases is presented. This approach requires mathematical assumptions which limits it to systems with density matrices defined on complex Hilbert spaces of dimension p^n where p is a prime number. With this limitation it is possible to define a phase space and Wigner functions in close analogy to the continuous case. That is, we use a phase space that is a direct sum of n two-dimensional vector spaces each containing p^2 points. This is in contrast to the more usual choice of a two-dimensional phase space containing p^(2n) points. A useful aspect of this approach is that we can relate complete separability of density matrices and their Wigner functions in a natural way. We discuss this in detail for bipartite systems and present the generalization to arbitrary numbers of subsystems when p is odd. Special attention is required for two qubits (p=2) and our technique fails to establish the separability property for more than two qubits.Comment: Some misprints have been corrected and a proof of the separability of the A matrices has been adde

    Thermodynamics and structure of simple liquids in the hyperbolic plane

    Full text link
    We provide a consistent statistical-mechanical treatment for describing the thermodynamics and the structure of fluids embedded in the hyperbolic plane. In particular, we derive a generalization of the virial equation relating the bulk thermodynamic pressure to the pair correlation function and we develop the appropriate setting for extending the integral-equation approach of liquid-state theory in order to describe the fluid structure. We apply the formalism and study the influence of negative space curvature on two types of systems that have been recently considered: Coulombic systems, such as the one- and two-component plasma models, and fluids interacting through short-range pair potentials, such as the hard-disk and the Lennard-Jones models.Comment: 25 pages, 10 Figure
    • …
    corecore