130 research outputs found

    Effect of low tidal volume ventilation on lung function and inflammation in mice

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>A large number of studies have investigated the effects of high tidal volume ventilation in mouse models. In contrast data on very short term effects of low tidal volume ventilation are sparse. Therefore we investigated the functional and structural effects of low tidal volume ventilation in mice.</p> <p>Methods</p> <p>38 Male C57/Bl6 mice were ventilated with different tidal volumes (Vt 5, 7, and 10 ml/kg) without or with application of PEEP (2 cm H<sub>2</sub>O). Four spontaneously breathing animals served as controls. Oxygen saturation and pulse rate were monitored. Lung function was measured every 5 min for at least 30 min. Afterwards lungs were removed and histological sections were stained for measurement of infiltration with polymorphonuclear leukocytes (PMN). Moreover, mRNA expression of macrophage inflammatory protein (MIP)-2 and tumor necrosis factor (TNF)α in the lungs was quantified using real time PCR.</p> <p>Results</p> <p>Oxygen saturation did not change significantly over time of ventilation in all groups (P > 0.05). Pulse rate dropped in all groups without PEEP during mechanical ventilation. In contrast, in the groups with PEEP pulse rate increased over time. These effects were not statistically significant (P > 0.05). Tissue damping (G) and tissue elastance (H) were significantly increased in all groups after 30 min of ventilation (P < 0.05). Only the group with a Vt of 10 ml/kg and PEEP did not show a significant increase in H (P > 0.05). Mechanical ventilation significantly increased infiltration of the lungs with PMN (P < 0.05). Expression of MIP-2 was significantly induced by mechanical ventilation in all groups (P < 0.05). MIP-2 mRNA expression was lowest in the group with a Vt of 10 ml/kg + PEEP.</p> <p>Conclusions</p> <p>Our data show that very short term mechanical ventilation with lower tidal volumes than 10 ml/kg did not reduce inflammation additionally. Formation of atelectasis and inadequate oxygenation with very low tidal volumes may be important factors. Application of PEEP attenuated inflammation.</p

    Biomarkers of acute lung injury: worth their salt?

    Get PDF
    The validation of biomarkers has become a key goal of translational biomedical research. The purpose of this article is to discuss the role of biomarkers in the management of acute lung injury (ALI) and related research. Biomarkers should be sensitive and specific indicators of clinically important processes and should change in a relevant timeframe to affect recruitment to trials or clinical management. We do not believe that they necessarily need to reflect pathogenic processes. We critically examined current strategies used to identify biomarkers and which, owing to expedience, have been dominated by reanalysis of blood derived markers from large multicenter Phase 3 studies. Combining new and existing validated biomarkers with physiological and other data may add predictive power and facilitate the development of important aids to research and therapy

    Corticotherapy for traumatic brain-injured Patients - The Corti-TC trial: study protocol for a randomized controlled trial

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Traumatic brain injury (TBI) is a main cause of severe prolonged disability of young patients. Hospital acquired pneumonia (HAP) add to the morbidity and mortality of traumatic brain-injured patients. In one study, hydrocortisone for treatment of traumatic-induced corticosteroid insufficiency (CI) in multiple injured patients has prevented HAP, particularly in the sub-group of patients with severe TBI. Fludrocortisone is recommended in severe brain-injured patients suffering from acute subarachnoid hemorrhage. Whether an association of hydrocortisone with fludrocortisone protects from HAP and improves neurological recovery is uncertain. The aim of the current study is to compare corticotherapy to placebo for TBI patients with CI.</p> <p>Methods</p> <p>The CORTI-TC (Corticotherapy in traumatic brain-injured patients) trial is a multicenter, randomized, placebo controlled, double-blind, two-arms study. Three hundred and seventy six patients hospitalized in Intensive Care Unit with a severe traumatic brain injury (Glasgow Coma Scale ≤ 8) are randomized in the first 24 hours following trauma to hydrocortisone (200 mg.day<sup>-1 </sup>for 7 days, 100 mg on days 8-9 and 50 mg on day-10) with fludrocortisone (50 μg for 10 days) or double placebo. The treatment is stopped if patients have an appropriate adrenal response. The primary endpoint is HAP on day-28. The endpoint of the ancillary study is the neurological status on 6 and 12 months.</p> <p>Discussion</p> <p>The CORTI-TC trial is the first randomized controlled trial powered to investigate whether hydrocortisone with fludrocortisone in TBI patients with CI prevent HAP and improve long term recovery.</p> <p>Trial registration</p> <p><a href="http://www.clinicaltrials.gov/ct2/show/NCT01093261">NCT01093261</a></p

    Very Low Tidal Volume Ventilation with Associated Hypercapnia - Effects on Lung Injury in a Model for Acute Respiratory Distress Syndrome

    Get PDF
    BACKGROUND: Ventilation using low tidal volumes with permission of hypercapnia is recommended to protect the lung in acute respiratory distress syndrome. However, the most lung protective tidal volume in association with hypercapnia is unknown. The aim of this study was to assess the effects of different tidal volumes with associated hypercapnia on lung injury and gas exchange in a model for acute respiratory distress syndrome. METHODOLOGY/PRINCIPAL FINDINGS: In this randomized controlled experiment sixty-four surfactant-depleted rabbits were exposed to 6 hours of mechanical ventilation with the following targets: Group 1: tidal volume = 8-10 ml/kg/PaCO(2) = 40 mm Hg; Group 2: tidal volume = 4-5 ml/kg/PaCO(2) = 80 mm Hg; Group 3: tidal volume = 3-4 ml/kg/PaCO(2) = 120 mm Hg; Group 4: tidal volume = 2-3 ml/kg/PaCO(2) = 160 mm Hg. Decreased wet-dry weight ratios of the lungs, lower histological lung injury scores and higher PaO(2) were found in all low tidal volume/hypercapnia groups (group 2, 3, 4) as compared to the group with conventional tidal volume/normocapnia (group 1). The reduction of the tidal volume below 4-5 ml/kg did not enhance lung protection. However, oxygenation and lung protection were maintained at extremely low tidal volumes in association with very severe hypercapnia and no adverse hemodynamic effects were observed with this strategy. CONCLUSION: Ventilation with low tidal volumes and associated hypercapnia was lung protective. A tidal volume below 4-5 ml/kg/PaCO(2) 80 mm Hg with concomitant more severe hypercapnic acidosis did not increase lung protection in this surfactant deficiency model. However, even at extremely low tidal volumes in association with severe hypercapnia lung protection and oxygenation were maintained
    corecore