6 research outputs found

    B Cells as Prognostic Biomarker After Surgery for Colorectal Liver Metastases

    Get PDF
    Background: The aim of this study was to identify more accurate variables to improve prognostication of individual patients with colorectal liver metastases (CRLM). Clinicopathological characteristics only partly explain the large range in survival rates. Methods: MessengerRNA expression profiles of resected CRLM of two patient groups were analysed by mRNA sequencing: poor survivors (death from recurrent disease 60 months after surgery). Tumour and adjacent liver parenchyma samples were analysed. Results: MessengerRNA expression profiling of the tumour samples identified 77 genes that were differentially expressed between the two survival groups at a False Discovery Rate (FDR) <0.1. In the adjacent liver parenchyma samples only one gene, MTRNR2L1, showed significantly higher expression in the good survivors. Pathway analysis showed higher expression of immune-related and stroma-related genes in tumour samples from good survivors. Expression data was then validated by immunohistochemistry in two cohorts comprising a total of 125 patients. Immunohistochemical markers that showed to be associated with good survival in the total cohort were: high K/L+ infiltration in tumour stroma [p = 0.029; OR 2.500 (95% CI 1.100–5.682)] and high CD79A+ infiltration in tumour stroma [p = 0.036; OR 2.428 (95%CI 1.062–5.552)]. Conclusions: A high stromal infiltration of CD79A+ B cells and K/L+ plasma cells might be favourable prognostic biomarkers after surgery for CRLM

    The miR-26b-5p/KPNA2 Axis Is an Important Regulator of Burkitt Lymphoma Cell Growth

    Get PDF
    The expression of several microRNAs (miRNAs) is known to be changed in Burkitt lymphoma (BL), compared to its normal counterparts. Although for some miRNAs, a role in BL was demonstrated, for most of them, their function is unclear. In this study, we aimed to identify miRNAs that control BL cell growth. Two BL cell lines were infected with lentiviral pools containing either 58 miRNA inhibitors or 44 miRNA overexpression constructs. Eighteen constructs showed significant changes in abundance over time, indicating that they affected BL growth. The screening results were validated by individual green fluorescent protein (GFP) growth competition assays for fifteen of the eighteen constructs. For functional follow-up studies, we focused on miR-26b-5p, whose overexpression inhibited BL cell growth. Argonaute 2 RNA immunoprecipitation (Ago2-IP) in two BL cell lines revealed 47 potential target genes of miR-26b-5p. Overlapping the list of putative targets with genes showing a growth repression phenotype in a genome-wide CRISPR/Cas9 knockout screen, revealed eight genes. The top-5 candidates included EZH2, COPS2, KPNA2, MRPL15, and NOL12. EZH2 is a known target of miR-26b-5p, with oncogenic properties in BL. The relevance of the latter four targets was confirmed using sgRNAs targeting these genes in individual GFP growth competition assays. Luciferase reporter assay confirmed binding of miR-26b-5p to the predicted target site for KPNA2, but not to the other genes. In summary, we identified 18 miRNAs that affected BL cell growth in a loss- or gain-of-function screening. A tumor suppressor role was confirmed for miR-26b-5p, and this effect could at least in part be attributed to KPNA2, a known regulator of OCT4, c-jun, and MYC

    Mutations in EMT-Related Genes in ALK Positive Crizotinib Resistant Non-Small Cell Lung Cancers

    Get PDF
    Crizotinib is an effective drug for patients with anaplastic lymphoma kinase (ALK)-positive non-small-cell lung cancer (NSCLC), but upon treatment, the tumors inevitably become crizotinib resistant in time. The resistance mechanisms are only partly understood. In this study, we aim to identify gene mutations associated with resistance in ALK positive advanced non-squamous NSCLC treated with crizotinib. Four ALK positive patients with progressive disease following crizotinib treatment were identified with paired pre- and post-crizotinib tumor tissue from our previously published cohort. Somatic variants in these samples were detected by whole exome sequencing. In one of the four patients, an ALK-resistance associated mutation was identified. In the other three patients, no ALK-resistance associated mutations were present. In these patients we identified 89 relevant somatic mutations in 74 genes that were specific to the resistant tumors. These genes were enriched in 15 pathways. Four pathways, were related to epithelial-mesenchymal transition (EMT): proteoglycans in cancer, HIF-1 signaling, FoxO signaling pathway, and ECM-receptor interaction. Analysis of other EMT-related pathways revealed three additional genes with mutations specific to the crizotinib-resistant tumor samples. The enrichment of mutations in genes associated with EMT-related pathways indicates that loss of epithelial differentiation may represent a relevant resistance mechanism for crizotinib

    Clinical Value of EGFR Copy Number Gain Determined by Amplicon-Based Targeted Next Generation Sequencing in Patients with EGFR-Mutated NSCLC

    Get PDF
    Background The clinical relevance of epidermal growth factor receptor (EGFR) copy number gain in patients with EGFR mutated advanced non-small cell lung cancer on first-line tyrosine kinase inhibitor treatment has not been fully elucidated. Objective We aimed to estimate EGFR copy number gain using amplicon-based next generation sequencing data and explored its prognostic value. Patients and Methods Next generation sequencing data were obtained for 1566 patients with non-small cell lung cancer. EGFR copy number gain was defined based on an increase in EGFR read counts relative to internal reference amplicons and normal controls in combination with a modified z-score >= 3.5. Clinical follow-up data were available for 60 patients treated with first-line EGFR-tyrosine kinase inhibitors. Results Specificity and sensitivity of next generation sequencing-based EGFR copy number estimations were above 90%. EGFR copy number gain was observed in 27.9% of EGFR mutant cases and in 7.4% of EGFR wild-type cases. EGFR gain was not associated with progression-free survival but showed a significant effect on overall survival with an adjusted hazard ratio of 3.14 (95% confidence interval 1.46-6.78, p = 0.003). Besides EGFR copy number gain, osimertinib in second or subsequent lines of treatment and the presence of T790M at relapse revealed significant effects in a multivariate analysis with adjusted hazard ratio of 0.43 (95% confidence interval 0.20-0.91, p = 0.028) and 0.24 (95% confidence interval 0.1-0.59, p = 0.001), respectively. Conclusions Pre-treatment EGFR copy number gain determined by amplicon-based next generation sequencing data predicts worse overall survival in EGFR-mutated patients treated with first-line EGFR-tyrosine kinase inhibitors. T790M at relapse and subsequent treatment with osimertinib predict longer overall survival
    corecore