13 research outputs found
Quantum Modeling of Thermodynamic Properties of Warm Dense Aluminum
Warm dense matter is attracting a lot of attention in the scientific community, due to its formation during intense laser-matter interaction and inertial confinement fusion. However, there is no accurate solution to mapping out the thermodynamic properties of warm dense matter. Experimental data are also incredibly scarce making computational models an incredibly useful tool. This paper provides equation of state (EOS) data for aluminum at specific densities within the warm dense matter regime. The EOS data were calculated using quantum molecular dynamics, which was performed by the computational package QuatumEspresso. EOS were determined by collecting and recording pressure after achieving equilibrium at a constant temperature and density. EOS data are plotted as a phase diagram. We found QuantumEspresso to be an accurate tool for predicting thermodynamic properties of WDM. Future research can be expanded to other materials and elements. The additional data on different materials can help other researchers to find trends and accurate EOS for warm dense matter
Experiment for cryogenic large-aperture intensity mapping: instrument design
The experiment for cryogenic large-aperture intensity mapping (EXCLAIM) is a balloon-borne telescope designed to survey star formation in windows from the present to z  =  3.5. During this time, the rate of star formation dropped dramatically, while dark matter continued to cluster. EXCLAIM maps the redshifted emission of singly ionized carbon lines and carbon monoxide using intensity mapping, which permits a blind and complete survey of emitting gas through statistics of cumulative brightness fluctuations. EXCLAIM achieves high sensitivity using a cryogenic telescope coupled to six integrated spectrometers employing kinetic inductance detectors covering 420 to 540 GHz with spectral resolving power R  =  512 and angular resolution ≈4  arc min. The spectral resolving power and cryogenic telescope allow the survey to access dark windows in the spectrum of emission from the upper atmosphere. EXCLAIM will survey 305  deg2 in the Sloan Digital Sky Survey Stripe 82 field from a conventional balloon flight in 2023. EXCLAIM will also map several galactic fields to study carbon monoxide and neutral carbon emission as tracers of molecular gas. We summarize the design phase of the mission
Turbulence in Rivers
The study of turbulence has always been a challenge for scientists working on geophysical flows. Turbulent flows are common in nature and have an important role in geophysical disciplines such as river morphology, landscape modeling, atmospheric dynamics and ocean currents. At present, new measurement and observation techniques suitable for fieldwork can be combined with laboratory and theoretical work to advance the understanding of river processes. Nevertheless, despite more than a century of attempts to correctly formalize turbulent flows, much still remains to be done by researchers and engineers working in hydraulics and fluid mechanics. In this contribution we introduce a general framework for the analysis of river turbulence. We revisit some findings and theoretical frameworks and provide a critical analysis of where the study of turbulence is important and how to include detailed information of this in the analysis of fluvial processes. We also provide a perspective of some general aspects that are essential for researchers/ practitioners addressing the subject for the first time. Furthermore, we show some results of interest to scientists and engineers working on river flows
31st Annual Meeting and Associated Programs of the Society for Immunotherapy of Cancer (SITC 2016) : part two
Background
The immunological escape of tumors represents one of the main ob- stacles to the treatment of malignancies. The blockade of PD-1 or CTLA-4 receptors represented a milestone in the history of immunotherapy. However, immune checkpoint inhibitors seem to be effective in specific cohorts of patients. It has been proposed that their efficacy relies on the presence of an immunological response. Thus, we hypothesized that disruption of the PD-L1/PD-1 axis would synergize with our oncolytic vaccine platform PeptiCRAd.
Methods
We used murine B16OVA in vivo tumor models and flow cytometry analysis to investigate the immunological background.
Results
First, we found that high-burden B16OVA tumors were refractory to combination immunotherapy. However, with a more aggressive schedule, tumors with a lower burden were more susceptible to the combination of PeptiCRAd and PD-L1 blockade. The therapy signifi- cantly increased the median survival of mice (Fig. 7). Interestingly, the reduced growth of contralaterally injected B16F10 cells sug- gested the presence of a long lasting immunological memory also against non-targeted antigens. Concerning the functional state of tumor infiltrating lymphocytes (TILs), we found that all the immune therapies would enhance the percentage of activated (PD-1pos TIM- 3neg) T lymphocytes and reduce the amount of exhausted (PD-1pos TIM-3pos) cells compared to placebo. As expected, we found that PeptiCRAd monotherapy could increase the number of antigen spe- cific CD8+ T cells compared to other treatments. However, only the combination with PD-L1 blockade could significantly increase the ra- tio between activated and exhausted pentamer positive cells (p= 0.0058), suggesting that by disrupting the PD-1/PD-L1 axis we could decrease the amount of dysfunctional antigen specific T cells. We ob- served that the anatomical location deeply influenced the state of CD4+ and CD8+ T lymphocytes. In fact, TIM-3 expression was in- creased by 2 fold on TILs compared to splenic and lymphoid T cells. In the CD8+ compartment, the expression of PD-1 on the surface seemed to be restricted to the tumor micro-environment, while CD4 + T cells had a high expression of PD-1 also in lymphoid organs. Interestingly, we found that the levels of PD-1 were significantly higher on CD8+ T cells than on CD4+ T cells into the tumor micro- environment (p < 0.0001).
Conclusions
In conclusion, we demonstrated that the efficacy of immune check- point inhibitors might be strongly enhanced by their combination with cancer vaccines. PeptiCRAd was able to increase the number of antigen-specific T cells and PD-L1 blockade prevented their exhaus- tion, resulting in long-lasting immunological memory and increased median survival
Building a laboratory and networks during the COVID-19 pandemic.
The coronavirus disease 2019 (COVID-19) pandemic has created unprecedented obstacles for new investigators to traverse. The pandemic's impact exacerbates inequities for groups historically excluded from science. We provide recommendations to support junior faculty, including women and faculty from groups historically excluded from science, in establishing laboratories during the pandemic and foreseeable future
Hydraulic and geomorphic processes in an overbank flood along a meandering, gravel-bed river: implications for chute formation
Hydraulic interactions between rivers and floodplains produce off-channel chutes, the presence of which influences the routing of water and sediment and thus the planform evolution of meandering rivers. Detailed studies of the hydrologic exchanges between channels and floodplains are usually conducted in laboratory facilities, and studies documenting chute development are generally limited to qualitative observations. In this study, we use a reconstructed, gravel-bedded, meandering river as a field laboratory for studying these mechanisms at a realistic scale. Using an integrated field and modeling approach, we quantified the flow exchanges between the river channel and its floodplain during an overbank flood, and identified locations where flow had the capacity to erode floodplain chutes. Hydraulic measurements and modeling indicated high rates of flow exchange between the channel and floodplain, with flow rapidly decelerating as water was decanted from the channel onto the floodplain due to the frictional drag provided by substrate and vegetation. Peak shear stresses were greatest downstream of the maxima in bend curvature, along the concave bank, where terrestrial LiDAR scans indicate initial floodplain chute formation. A second chute has developed across the convex bank of a meander bend, in a location where sediment accretion, point bar development and plant colonization have created divergent flow paths between the main channel and floodplain. In both cases, the off-channel chutes are evolving slowly during infrequent floods due to the coarse nature of the floodplain, though rapid chute formation would be more likely in finer-grained floodplains. The controls on chute formation at these locations include the flood magnitude, river curvature, floodplain gradient, erodibility of the floodplain sediment, and the flow resistance provided by riparian vegetation