145 research outputs found

    Thermal boundary conductance across rough interfaces probed by molecular dynamics

    Full text link
    In this article, we report the influence of the interfacial roughness on the thermal boundary conductance between two crystals, using molecular dynamics. We show evidence of a transition between two regimes, depending on the interfacial roughness: when the roughness is small, the boundary conductance is constant taking values close to the conductance of the corresponding planar interface. When the roughness is larger, the conductance becomes larger than the planar interface conductance, and the relative increase is found to be close to the increase of the interfacial area. The cross-plane conductivity of a superlattice with rough interfaces is found to increase in a comparable amount, suggesting that heat transport in superlattices is mainly controlled by the boundary conductance. These observations are interpreted using the wave characteristics of the energy carriers. We characterize also the effect of the angle of the asperities, and find that the boundary conductance displayed by interfaces having steep slopes may become important if the lateral period characterizing the interfacial profile is large enough. Finally, we consider the effect of the shape of the interfaces, and show that the sinusoidal interface displays the highest conductance, because of its large true interfacial area. All these considerations are relevant to the optimization of nanoscale interfacial energy transport

    Thermal transport in 2D and 3D nanowire networks

    Full text link
    We report on thermal transport properties in 2 and 3 dimensions interconnected nanowire networks (strings and nodes). The thermal conductivity of these nanostructures decreases in increasing the distance of the nodes, reaching ultra-low values. This effect is much more pronounced in 3D networks due to increased porosity, surface to volume ratio and the enhanced backscattering at 3D nodes compared to 2D nodes. We propose a model to estimate the thermal resistance related to the 2D and 3D interconnections in order to provide an analytic description of thermal conductivity of such nanowire networks; the latter is in good agreement with Molecular Dynamic results

    CO adsorption on metal surfaces: a hybrid functional study with plane wave basis set

    Full text link
    We present a detailed study of the adsorption of CO on Cu, Rh, and Pt (111) surfaces in top and hollow sites. The study has been performed using the local density approximation, the gradient corrected functional PBE, and the hybrid Hartree-Fock density functionals PBE0 and HSE03 within the framework of generalized Kohn-Sham density functional theory using a plane-wave basis set. As expected, the LDA and GGA functionals show a tendency to favor the hollow sites, at variance with experimental findings that give the top site as the most stable adsorption site. The PBE0 and HSE03 functionals reduce this tendency. In fact, they predict the correct adsorption site for Cu and Rh but fail for Pt. But even in this case, the hybrid functional destabilizes the hollow site by 50 meV compared to the PBE functional. The results of the total energy calculations are presented along with an analysis of the projected density of states.Comment: 32 pages, 6 tables, 3 figures. (Re)Submitted to Phys. Rev. B; LDA results added in the tables; minor changes in the tex

    Impact of Screw and Edge Dislocation on the Thermal Conductivity of Nanowires and Bulk GaN

    Full text link
    We report on thermal transport properties of wurtzite GaN in the presence of dislocations, by using molecular dynamics simulations. A variety of isolated dislocations in a nanowire configuration were analyzed and found to reduce considerably the thermal conductivity while impacting its temperature dependence in a different manner. We demonstrate that isolated screw dislocations reduce the thermal conductivity by a factor of two, while the influence of edge dislocations is less pronounced. The relative reduction of thermal conductivity is correlated with the strain energy of each of the five studied types of dislocations and the nature of the bonds around the dislocation core. The temperature dependence of the thermal conductivity follows a physical law described by a T−1^{-1} variation in combination with an exponent factor which depends on the material's nature, the type and the structural characteristics of the dislocation's core. Furthermore, the impact of the dislocations density on the thermal conductivity of bulk GaN is examined. The variation and even the absolute values of the total thermal conductivity as a function of the dislocation density is similar for both types of dislocations. The thermal conductivity tensors along the parallel and perpendicular directions to the dislocation lines are analyzed. The discrepancy of the anisotropy of the thermal conductivity grows in increasing the density of dislocations and it is more pronounced for the systems with edge dislocations
    • …
    corecore