828 research outputs found
Understanding Pound-Drever-Hall locking using voltage controlled radio-frequency oscillators: An undergraduate experiment
We have developed a senior undergraduate experiment that illustrates
frequency stabilization techniques using radio-frequency electronics. The
primary objective is to frequency stabilize a voltage controlled oscillator to
a cavity resonance at 800 MHz using the Pound-Drever-Hall method. This
technique is commonly applied to stabilize lasers at optical frequencies. By
using only radio-frequency equipment it is possible to systematically study
aspects of the technique more thoroughly, inexpensively, and free from eye
hazards. Students also learn about modular radio-frequency electronics and
basic feedback control loops. By varying the temperature of the resonator,
students can determine the thermal expansion coefficients of copper, aluminum,
and super invar.Comment: 9 pages, 10 figure
Recommended from our members
Spring 1970
Response of Coastal Bermudagrass to Nitrogen by D.A. Mays and G. L. Terman (page 3) Soil & Water Resources by Fred P. Miller (7) Organization Against Oil by R. B. Clark (9) 1970 Turf Conference Program (12) Principles for Any Green by Wayne Morgan (16) An Effective Technique for Recognition by Howard Gaskill (18) Ten Years of Decisions by James W. Brandt (21
Double Neutron Star Systems and Natal Neutron Star Kicks
We study the four double neutron star systems found in the Galactic disk in
terms of the orbital characteristics of their immediate progenitors and the
natal kicks imparted to neutron stars. Analysis of the effect of the second
supernova explosion on the orbital dynamics, combined with recent results from
simulations of rapid accretion onto neutron stars lead us to conclude that the
observed systems could not have been formed had the explosion been symmetric.
Their formation becomes possible if kicks are imparted to the radio-pulsar
companions at birth. We identify the constraints imposed on the immediate
progenitors of the observed double neutron stars and calculate the ranges
within which their binary characteristics (orbital separations and masses of
the exploding stars) are restricted. We also study the dependence of these
limits on the magnitude of the kick velocity and the time elapsed since the
second explosion. For each of the double neutron stars, we derive a minimum
kick magnitude required for their formation, and for the two systems in close
orbits we find it to exceed 200km/s. Lower limits are also set to the
center-of-mass velocities of double neutron stars, and we find them to be
consistent with the current proper motion observations.Comment: 25 pages, 6 figs (9 parts), 4 tables, AASTeX, Accepted in Ap
The Intrinsic Origin of Spin Echoes in Dipolar Solids Generated by Strong Pi Pulses
In spectroscopy, it is conventional to treat pulses much stronger than the
linewidth as delta-functions. In NMR, this assumption leads to the prediction
that pi pulses do not refocus the dipolar coupling. However, NMR spin echo
measurements in dipolar solids defy these conventional expectations when more
than one pi pulse is used. Observed effects include a long tail in the CPMG
echo train for short delays between pi pulses, an even-odd asymmetry in the
echo amplitudes for long delays, an unusual fingerprint pattern for
intermediate delays, and a strong sensitivity to pi-pulse phase. Experiments
that set limits on possible extrinsic causes for the phenomena are reported. We
find that the action of the system's internal Hamiltonian during any real pulse
is sufficient to cause the effects. Exact numerical calculations, combined with
average Hamiltonian theory, identify novel terms that are sensitive to
parameters such as pulse phase, dipolar coupling, and system size.
Visualization of the entire density matrix shows a unique flow of quantum
coherence from non-observable to observable channels when applying repeated pi
pulses.Comment: 24 pages, 27 figures. Revised from helpful referee comments. Added
new Table IV, new paragraphs on pages 3 and 1
The landscape of gifted and talented education in England and Wales: How are teachers implementing policy?
This is an Author's Accepted Manuscript of an article published in Research Papers in Education, 27(2), 167-186, 2012, copyright Taylor & Francis, available online at: http://www.tandfonline.com/10.1080/02671522.2010.509514.This paper explores the evidence relating to how primary schools are responding to the ‘gifted and talented’ initiative in England and Wales. A questionnaire survey which invited both closed and open-ended responses was carried out with a national sample of primary schools. The survey indicated an increasing proportion of coordinators, compared with a survey carried out in 1996, were identifying their gifted and talented children as well as having associated school policies. However, the survey also highlighted a number of issues which need addressing if the initiative is to achieve its objective of providing the best possible educational opportunities for children. For example, it was found that a significant number of practitioners were not aware of the existence of the National Quality Standards for gifted and talented education, provided by the UK government in 2007, and the subject-specific criteria provided by the UK’s Curriculum Authority for identification and provision have been largely ignored. The process of identifying children to be placed on the ‘gifted and talented’ register seems haphazard and based on pragmatic reasons. Analysis of teachers’ responses also revealed a range of views and theoretical positioning held by them, which have implications for classroom practice. As the ‘gifted and talented’ initiative in the UK is entering a second decade, and yet more significant changes in policy are introduced, pertinent questions need to be raised and given consideration
Lysosomes in iron metabolism, ageing and apoptosis
The lysosomal compartment is essential for a variety of cellular functions, including the normal turnover of most long-lived proteins and all organelles. The compartment consists of numerous acidic vesicles (pH ∼4 to 5) that constantly fuse and divide. It receives a large number of hydrolases (∼50) from the trans-Golgi network, and substrates from both the cells’ outside (heterophagy) and inside (autophagy). Many macromolecules contain iron that gives rise to an iron-rich environment in lysosomes that recently have degraded such macromolecules. Iron-rich lysosomes are sensitive to oxidative stress, while ‘resting’ lysosomes, which have not recently participated in autophagic events, are not. The magnitude of oxidative stress determines the degree of lysosomal destabilization and, consequently, whether arrested growth, reparative autophagy, apoptosis, or necrosis will follow. Heterophagy is the first step in the process by which immunocompetent cells modify antigens and produce antibodies, while exocytosis of lysosomal enzymes may promote tumor invasion, angiogenesis, and metastasis. Apart from being an essential turnover process, autophagy is also a mechanism by which cells will be able to sustain temporary starvation and rid themselves of intracellular organisms that have invaded, although some pathogens have evolved mechanisms to prevent their destruction. Mutated lysosomal enzymes are the underlying cause of a number of lysosomal storage diseases involving the accumulation of materials that would be the substrate for the corresponding hydrolases, were they not defective. The normal, low-level diffusion of hydrogen peroxide into iron-rich lysosomes causes the slow formation of lipofuscin in long-lived postmitotic cells, where it occupies a substantial part of the lysosomal compartment at the end of the life span. This seems to result in the diversion of newly produced lysosomal enzymes away from autophagosomes, leading to the accumulation of malfunctioning mitochondria and proteins with consequent cellular dysfunction. If autophagy were a perfect turnover process, postmitotic ageing and several age-related neurodegenerative diseases would, perhaps, not take place
Retrograde semaphorin-plexin signalling drives homeostatic synaptic plasticity.
Homeostatic signalling systems ensure stable but flexible neural activity and animal behaviour. Presynaptic homeostatic plasticity is a conserved form of neuronal homeostatic signalling that is observed in organisms ranging from Drosophila to human. Defining the underlying molecular mechanisms of neuronal homeostatic signalling will be essential in order to establish clear connections to the causes and progression of neurological disease. During neural development, semaphorin-plexin signalling instructs axon guidance and neuronal morphogenesis. However, semaphorins and plexins are also expressed in the adult brain. Here we show that semaphorin 2b (Sema2b) is a target-derived signal that acts upon presynaptic plexin B (PlexB) receptors to mediate the retrograde, homeostatic control of presynaptic neurotransmitter release at the neuromuscular junction in Drosophila. Further, we show that Sema2b-PlexB signalling regulates presynaptic homeostatic plasticity through the cytoplasmic protein Mical and the oxoreductase-dependent control of presynaptic actin. We propose that semaphorin-plexin signalling is an essential platform for the stabilization of synaptic transmission throughout the developing and mature nervous system. These findings may be relevant to the aetiology and treatment of diverse neurological and psychiatric diseases that are characterized by altered or inappropriate neural function and behaviour
ERP evidence suggests executive dysfunction in ecstasy polydrug users
Background: Deficits in executive functions such as access to semantic/long-term memory have been shown in ecstasy users in previous research. Equally, there have been many reports of equivocal findings in this area. The current study sought to further investigate behavioural and electro-physiological measures of this executive function in ecstasy users.
Method: Twenty ecstasy–polydrug users, 20 non-ecstasy–polydrug users and 20 drug-naïve controls were recruited. Participants completed background questionnaires about their drug use, sleep quality, fluid intelligence and mood state. Each individual also completed a semantic retrieval task whilst 64 channel Electroencephalography (EEG) measures were recorded.
Results: Analysis of Variance (ANOVA) revealed no between-group differences in behavioural performance on the task. Mixed ANOVA on event-related potential (ERP) components P2, N2 and P3 revealed significant between-group differences in the N2 component. Subsequent exploratory univariate ANOVAs on the N2 component revealed marginally significant between-group differences, generally showing greater negativity at occipito-parietal electrodes in ecstasy users compared to drug-naïve controls. Despite absence of behavioural differences, differences in N2 magnitude are evidence of abnormal executive functioning in ecstasy–polydrug users
Supernova Kicks, Magnetic Braking, and Neutron-Star Binaries
We consider the formation of low-mass X-ray binaries containing accreting
neutron stars via the helium-star supernova channel. The predicted relative
number of short-period transients provides a sensitive test of the input
physics in this process. We investigate the effect of varying mean kick
velocities, orbital angular momentum loss efficiencies, and common envelope
ejection efficiencies on the subpopulation of short-period systems, both
transient and persistent. Guided by the thermal-viscous disk instability model
in irradiation-dominated disks, we posit that short-period transients have
donors close to the end of core-hydrogen burning. We find that with increasing
mean kick velocity the overall short-period fraction, s, grows, while the
fraction, r, of systems with evolved donors among short-period systems drops.
This effect, acting in opposite directions on these two fractions, allows us to
constrain models of LMXB formation through comparison with observational
estimates of s and r. Without fine tuning or extreme assumptions about
evolutionary parameters, consistency between models and current observations is
achieved for a regime of intermediate average kick magnitudes of about 100-200
km/s, provided that (i) orbital braking for systems with donor masses in the
range 1-1.5 solar masses is weak, i.e., much less effective than a simple
extrapolation of standard magnetic braking beyond 1.0 solar mass would suggest,
and (ii) the efficiency of common envelope ejection is low.Comment: 24 pages, AAATeX, accepted for publication in The Astrophysical
Journa
Shaping bursting by electrical coupling and noise
Gap-junctional coupling is an important way of communication between neurons
and other excitable cells. Strong electrical coupling synchronizes activity
across cell ensembles. Surprisingly, in the presence of noise synchronous
oscillations generated by an electrically coupled network may differ
qualitatively from the oscillations produced by uncoupled individual cells
forming the network. A prominent example of such behavior is the synchronized
bursting in islets of Langerhans formed by pancreatic \beta-cells, which in
isolation are known to exhibit irregular spiking. At the heart of this
intriguing phenomenon lies denoising, a remarkable ability of electrical
coupling to diminish the effects of noise acting on individual cells.
In this paper, we derive quantitative estimates characterizing denoising in
electrically coupled networks of conductance-based models of square wave
bursting cells. Our analysis reveals the interplay of the intrinsic properties
of the individual cells and network topology and their respective contributions
to this important effect. In particular, we show that networks on graphs with
large algebraic connectivity or small total effective resistance are better
equipped for implementing denoising. As a by-product of the analysis of
denoising, we analytically estimate the rate with which trajectories converge
to the synchronization subspace and the stability of the latter to random
perturbations. These estimates reveal the role of the network topology in
synchronization. The analysis is complemented by numerical simulations of
electrically coupled conductance-based networks. Taken together, these results
explain the mechanisms underlying synchronization and denoising in an important
class of biological models
- …