16 research outputs found
Contraction-mediated phosphorylation of AMPK is lower in skeletal muscle of adenylate kinase-deficient mice.
Item does not contain fulltextThe activity of AMP-activated protein kinase (AMPK) increases during muscle contractions as a result of elevated AMP concentration. We tested whether activation of AMPK would be altered during contractions in adenylate kinase (AK) 1-deficient (AK1-/-) mice, because they have a reduced capacity to form AMP. The right gastrocnemius-soleus-plantaris muscle group was stimulated via the sciatic nerve at 2 Hz for 30 min in both wild-type (WT) and AK1-/- animals. Initial force production was not different between the two groups (129.2 +/- 3.3 g vs. 140.9 +/- 8.5 g for WT and AK1-/-, respectively); however, force production by AK1-/- mice was significantly greater over the 30-min stimulation period, and final tension was 85 +/- 4.5% of initial in WT and 102 +/- 3.2% of initial in AK1-/- mice. Western blot analysis showed that AMPK phosphorylation with contractions was clearly increased in WT muscles (4.0 +/- 1.1 above resting values), but did not change noticeably with AK deficiency (1.6 +/- 0.4 above WT resting values). However, increases in phosphorylation of acetyl CoA carboxylase were robust in both WT and AK1-/- muscles and not different between the two groups. These results suggest that reduced formation of AMP during contractions in skeletal muscle of AK1-/- mice results in reduced phosphorylation of AMPK. However, altered AMPK signaling was not apparent in the phosphorylation status of acetyl CoA carboxylase, a typical marker of AMPK activity
Skeletal muscle contractile performance and ADP accumulation in adenylate kinase-deficient mice.
Item does not contain fulltextThe production of AMP by adenylate kinase (AK) and subsequent deamination by AMP deaminase limits ADP accumulation during conditions of high-energy demand in skeletal muscle. The goal of this study was to investigate the consequences of AK deficiency (-/-) on adenine nucleotide management and whole muscle function at high-energy demands. To do this, we examined isometric tetanic contractile performance of the gastrocnemius-plantaris-soleus (GPS) muscle group in situ in AK1(-/-) mice and wild-type (WT) controls over a range of contraction frequencies (30-120 tetani/min). We found that AK1(-/-) muscle exhibited a diminished inosine 5'-monophosphate formation rate (14% of WT) and an inordinate accumulation of ADP ( approximately 1.5 mM) at the highest energy demands, compared with WT controls. AK-deficient muscle exhibited similar initial contractile performance (521 +/- 9 and 521 +/- 10 g tension in WT and AK1(-/-) muscle, respectively), followed by a significant slowing of relaxation kinetics at the highest energy demands relative to WT controls. This is consistent with a depressed capacity to sequester calcium in the presence of high ADP. However, the overall pattern of fatigue in AK1(-/-) mice was similar to WT control muscle. Our findings directly demonstrate the importance of AMP formation and subsequent deamination in limiting ADP accumulation. Whole muscle contractile performance was, however, remarkably tolerant of ADP accumulation markedly in excess of what normally occurs in skeletal muscle
Alterations in AMP deaminas activity and kinetics in skeletal muscle of creatine kinase-deficient mice
Item does not contain fulltext6 p
American College of Sports Medicine roundtable. The physiological and health effects of oral creatine supplementation
Creatine (Cr) supplementation has become a common practice among professional, elite, collegiate, amateur, and recreational athletes with the expectation of enhancing exercise performance. Research indicates that Cr supplementation can increase muscle phosphocreatine (PCr) content, but not in all individuals. A high dose of 20 g x d(-1) that is common to many research studies is not necessary, as 3 g x d(-1) will achieve the same increase in PCr given time. Coincident ingestion of carbohydrate with Cr may increase muscle uptake; however, the procedure requires a large amount of carbohydrate. Exercise performance involving short periods of extremely powerful activity can be enhanced, especially during repeated bouts of activity. This is in keeping with the theoretical importance of an elevated PCr content in skeletal muscle. Cr supplementation does not increase maximal isometric strength, the rate of maximal force production, nor aerobic exercise performance. Most of the evidence has been obtained from healthy young adult male subjects with mixed athletic ability and training status. Less research information is available related to the alterations due to age and gender. Cr supplementation leads to weight gain within the first few days, likely due to water retention related to Cr uptake in the muscle. Cr supplementation is associated with an enhanced accrual of strength in strength-training programs, a response not independent from the initial weight gain, but may be related to a greater volume and intensity of training that can be achieved. There is no definitive evidence that Cr supplementation causes gastrointestinal, renal, and/or muscle cramping complications. The potential acute effects of high-dose Cr supplementation on body fluid balance has not been fully investigated, and ingestion of Cr before or during exercise is not recommended. There is evidence that medical use of Cr supplementation is warranted in certain patients (e.g.. neuromuscular disease); future research may establish its potential usefulness in other medical applications. Although Cr supplementation exhibits small but significant physiological and performance changes, the increases in performance are realized during very specific exercise conditions. This suggests that the apparent high expectations for performance enhancement, evident by the extensive use of Cr supplementation, are inordinate