2 research outputs found

    Effects of in vitro digestion and fecal fermentation on physico-chemical properties and metabolic behavior of polysaccharides from Clitocybe squamulosa

    No full text
    The aim of this study was to establish a human digestion model in vitro to explore the degradation characteristics of a novel high-purity polysaccharide from Clitocybe squamulosa (CSFP2). The results showed that the content of reducing sugars (CR) of CSFP2 increased from 0.13 to 0.23 mg/mL, the molecular weight (Mw) of CSFP2 decreased significantly during the saliva-gastrointestinal digestion. The constituent monosaccharides of CSFP2, including galactose, glucose, and mannose, were stable during in vitro digestion, but their molar ratios were changed from 0.023: 0.737: 0.234 to 0.496: 0.478: 0.027. The surface of CSFP2 changes from a rough flaky structure to a scattered flocculent or rod-shaped structure after the gastrointestinal digestion. However, the apparent viscosity of CSFP2 was overall stable during in vitro digestion. Moreover, CSFP2 still maintains its strong antioxidant capacity after saliva-gastrointestinal digestion. The results showed that CSFP2 can be partially decomposed during digestion. Meanwhile, some physico-chemical properties of the fermentation broth containing CSFP2 changed significantly after gut microbiota fermentation. For example, the pH value (from 8.46 to 4.72) decreased significantly (p < 0.05) after 48 h of fermentation. the OD600 value increased first and then decreased (from 2.00 to 2.68 to 1.32) during 48-h fermentation. In addition, CSFP2 could also increase the amounts of short-chain fatty acids (SCFAs) (from 5.5 to 37.15 mmol/L) during fermentation (in particular, acetic acid, propionic acid, and butyric acid). Furthermore, the relative abundances of Bacteriodes, Bifidobacterium, Catenibacterium, Lachnospiraceae_NK4A136_group, Megasphaera, Prevotella, Megamonas, and Lactobacillus at genus level were markedly increased with the intervention of CSFP2. These results provided a theoretical basis for the further development of functional foods related to CSFP2

    Purification, Characterization, and Immobilization of a Novel Protease-Resistant &alpha;-Galactosidase from Oudemansiella radicata and Its Application in Degradation of Raffinose Family Oligosaccharides from Soymilk

    No full text
    &alpha;-galactosidase (EC 3.2.1.22) are glycosidases that catalyze the hydrolysis of &alpha;-1,6-linked D-galactosyl residues of different substrates, which has been widely applied in the food industry. Oudemansiella radicata is a kind of precious edible medicinal mushroom, which is a healthy, green, and safe food-derived enzyme source. In this study, a novel acidic &alpha;-galactosidase was purified from the dry fruiting bodies of O. radicata by ion-exchange chromatography and gel filtration, and designated as ORG (O. radicata &alpha;-galactosidase). ORG was further immobilized to obtain iORG by the sodium alginate&ndash;chitosan co-immobilization method. Then, the characterization of free and immobilized enzymes and their potential application in the removal of the RFOs from soymilk were investigated. The results showed that ORG might be a 74 kDa heterodimer, and it exhibited maximum activity at 50 &deg;C and pH 3.0, whereas iORG showed maximum activity at 50 &deg;C and pH 5.5. In addition, iORG exhibited higher thermal stability, pH stability, storage stability, and a better degradation effect on raffinose family oligosaccharides (RFOs) in soymilk than ORG, and iORG completely hydrolyzed RFOs in soymilk at 50 &deg;C within 3 h. Therefore, iORG might be a promising candidate in the food industry due to its excellent stability, high removal efficiency of RFOs from soymilk, and great reusability
    corecore