50 research outputs found

    Identification of Novel Functional Inhibitors of Acid Sphingomyelinase

    Get PDF
    We describe a hitherto unknown feature for 27 small drug-like molecules, namely functional inhibition of acid sphingomyelinase (ASM). These entities named FIASMAs (Functional Inhibitors of Acid SphingoMyelinAse), therefore, can be potentially used to treat diseases associated with enhanced activity of ASM, such as Alzheimer's disease, major depression, radiation- and chemotherapy-induced apoptosis and endotoxic shock syndrome. Residual activity of ASM measured in the presence of 10 µM drug concentration shows a bimodal distribution; thus the tested drugs can be classified into two groups with lower and higher inhibitory activity. All FIASMAs share distinct physicochemical properties in showing lipophilic and weakly basic properties. Hierarchical clustering of Tanimoto coefficients revealed that FIASMAs occur among drugs of various chemical scaffolds. Moreover, FIASMAs more frequently violate Lipinski's Rule-of-Five than compounds without effect on ASM. Inhibition of ASM appears to be associated with good permeability across the blood-brain barrier. In the present investigation, we developed a novel structure-property-activity relationship by using a random forest-based binary classification learner. Virtual screening revealed that only six out of 768 (0.78%) compounds of natural products functionally inhibit ASM, whereas this inhibitory activity occurs in 135 out of 2028 (6.66%) drugs licensed for medical use in humans

    Rottebehaelter zur mechanischen und biologischen Vorreinigung von haeuslichem Abwasser - Optimierung eines Rottebehaelters Schlussbericht

    Full text link
    SIGLEAvailable from TIB Hannover: F03B1239 / FIZ - Fachinformationszzentrum Karlsruhe / TIB - Technische InformationsbibliothekBundesministerium fuer Bildung und Forschung, Berlin (Germany); Arbeitsgemeinschaft Industrieller Forschungsvereinigungen e.V., Koeln (Germany)DEGerman

    Exploring Potency and Selectivity Receptor Antagonist Profiles Using a Multilabel Classification Approach: The Human Adenosine Receptors as a Key Study

    Full text link
    Nowadays, in medicinal chemistry adenosine receptors represent some of the most studied targets, and there is growing interest on the different adenosine receptor (AR) subtypes. The AR subtypes selectivity is highly desired in the development of potent ligands to achieve the therapeutic success. So far, very few ligand-based strategies have been investigated to predict the receptor subtypes selectivity. In the present study, we have carried out a novel application of the multilabel classification approach by combining our recently reported autocorrelated molecular descriptors encoding for the molecular electrostatic potential (autoMEP) with support vector machines (SVMs). Three valuable models, based on decreasing thresholds of potency, have been generated as in series quantitative sieves for the simultaneous prediction of the hA(1)R, hA(2A)R, hA(2B)R, and hA(3)R subtypes potency profile and selectivity of a large collection, more than 500, of known inverse agonists such as xanthine, pyrazolo-triazolo-pyrimidine, and triazolo-pyrimidine analogues. The robustness and reliability of our multilabel classification models were assessed by predicting an internal test set. Finally, we have applied our strategy to 13 newly synthesized pyrazolo-triazolo-pyrimidine derivatives inferring their full adenosine receptor potency spectrum and hAR subtypes selectivity profile

    Exploring Potency and Selectivity Receptor Antagonist Profiles Using a Multilabel Classification Approach: The Human Adenosine Receptors as a Key Study

    Full text link
    Nowadays, in medicinal chem. adenosine receptors represent some of the most studied targets, and there is growing interest on the different adenosine receptor (AR) subtypes. The AR subtypes selectivity is highly desired in the development of potent ligands to achieve the therapeutic success. So far, very few ligand-based strategies have been investigated to predict the receptor subtypes selectivity. In the present study, we have carried out a novel application of the multilabel classification approach by combining our recently reported autocorrelated mol. descriptors encoding for the mol. electrostatic potential (autoMEP) with support vector machines (SVMs). Three valuable models, based on decreasing thresholds of potency, have been generated as in series quant. sieves for the simultaneous prediction of the hA1R, hA2AR, hA2BR, and hA3R subtypes potency profile and selectivity of a large collection, more than 500, of known inverse agonists such as xanthine, pyrazolo-triazolo-pyrimidine, and triazolo-pyrimidine analogs. The robustness and reliability of our multilabel classification models were assessed by predicting an internal test set. Finally, we have applied our strategy to 13 newly synthesized pyrazolo-triazolo-pyrimidine derivs. inferring their full adenosine receptor potency spectrum and hAR subtypes selectivity profil
    corecore