3 research outputs found

    Degradation of Chemical Components of Thermally Modified <i>Robinia pseudoacacia</i> L. Wood and Its Effect on the Change in Mechanical Properties

    No full text
    Currently, emphasis is placed on using environmentally friendly materials both from a structural point of view and the application of protective means. For this reason, it is advisable to deal with the thermal modification of wood, which does not require the application of protective substances, to increase its service life. The main reason for the thermal modification of black locust is that although black locust grows abundantly in our country, it has no industrial use. It is mainly used outdoors, where thermal modification could increase its resistance. This article deals with the thermal modification of black locust wood (Robinia pseudoacacia L.) and the impact of this modification on the chemical components of the wood with an overlap in the change in mechanical properties compared to untreated wood. Static (LOP, MOR, and MOE) and dynamic (IBS) bending properties were evaluated as representative mechanical properties. At the same time, the impact of thermal modification on the representation of chemical components of wood (cellulose, lignin, hemicellulose) was also tested. As a result of the heat treatment, the mechanical properties gradually decreased as the temperature increased. The highest decrease in mechanical values found at 210 °C was 43.7% for LOP and 45.1% for MOR. Thermal modification caused a decrease in the content of wood polysaccharides (the decrease in hemicelluloses content was 33.2% and the drop in cellulose was about 29.9% in samples treated at 210 °C), but the relative amount of lignin in the wood subjected to increased temperature was higher due to autocondensation, and mainly because of polysaccharide loss. Based on the correlations between chemical and mechanical changes caused by thermal modification, it is possible to observe the effects of reducing the proportions of chemical components and changes in their characteristic properties (DP, TCI) on the reduction in mechanical properties. The results of this research serve to better understand the behavior of black locust wood during thermal modification, which can primarily be used to increase its application use

    Chemical and Morphological Composition of Norway Spruce Wood (Picea abies, L.) in the Dependence of Its Storage

    No full text
    Chemical composition and morphological properties of Norway spruce wood and bark were evaluated. The extractives, cellulose, hemicelluloses, and lignin contents were determined by wet chemistry methods. The dimensional characteristics of the fibers (length and width) were measured by Fiber Tester. The results of the chemical analysis of wood and bark show the differences between the trunk and top part, as well as in the different heights of the trunk and in the cross section of the trunk. The biggest changes were noticed between bark trunk and bark top. The bark top contains 10% more of extractives and 9.5% less of lignin. Fiber length and width depends on the part of the tree, while the average of these properties are larger depending on height. Both wood and bark from the trunk contains a higher content of fines (fibers &lt;0.3 mm) and less content of longer fibers (&gt;0.5 mm) compared to the top. During storage, it reached a decrease of extractives mainly in bark. Wood from the trunk retained very good durability in terms of chemical composition during the storage. In view of the morphological characteristics, it occurred to decrease both average fibers length and width in wood and bark

    Fire Resistance Evaluation of New Wooden Composites Containing Waste Rubber from Automobiles

    No full text
    Particleboards containing waste rubber (tires and mixtures of isolators and carpets) filler were evaluated from the point of view of its flammability. The assessment of the utilization of these composites in the construction industry was analyzed through the determination of their spontaneous ignition temperatures, mass burning rate and calorific value. Based on the results of spontaneous ignition temperatures, similar values between particleboards and particleboards containing 10%, 15% and 20% of waste tires were obtained. The average time was from 298 s to 309 s and the average temperature was from 428.1 °C to 431.7 °C. For the mass burning rate, there were similar results between particleboards and particleboards containing 10% of waste tires and waste rubber. The time to initiation was 34 s and the time to reaching a maximal burning rate was from 66 s to 68 s. The calorimetry results showed similar properties for the calorimetric value and ash content in particleboards and particleboards containing 10% of waste tires and waste rubber. The calorific value was from 18.4 MJ·kg−1 to 19.7 MJ·kg−1 and the ash content from 0.5% to 2.9%
    corecore