3 research outputs found

    Impact of Polypharmacy on Candidate Biomarker miRNomes for the Diagnosis of Fibromyalgia and Myalgic Encephalomyelitis/Chronic Fatigue Syndrome: Striking Back on Treatments

    No full text
    Fibromyalgia (FM) and myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS) are diseases of unknown etiology presenting complex and often overlapping symptomatology. Despite promising advances on the study of miRNomes of these diseases, no validated molecular diagnostic biomarker yet exists. Since FM and ME/CFS patient treatments commonly include polypharmacy, it is of concern that biomarker miRNAs are masked by drug interactions. Aiming at discriminating between drug-effects and true disease-associated differential miRNA expression, we evaluated the potential impact of commonly prescribed drugs on disease miRNomes, as reported by the literature. By using the web search tools SM2miR, Pharmaco-miR, and repoDB, we found a list of commonly prescribed drugs that impact FM and ME/CFS miRNomes and therefore could be interfering in the process of biomarker discovery. On another end, disease-associated miRNomes may incline a patient’s response to treatment and toxicity. Here, we explored treatments for diseases in general that could be affected by FM and ME/CFS miRNomes, finding a long list of them, including treatments for lymphoma, a type of cancer affecting ME/CFS patients at a higher rate than healthy population. We conclude that FM and ME/CFS miRNomes could help refine pharmacogenomic/pharmacoepigenomic analysis to elevate future personalized medicine and precision medicine programs in the clinic

    Autoantibodies to selenoprotein P in chronic fatigue syndrome suggest selenium transport impairment and acquired resistance to thyroid hormone

    Get PDF
    Chronic Fatigue Syndrome (CFS) presents with symptoms of hypothyroidism, including mental and physical fatigue, poor sleep, depression, and anxiety. However, thyroid hormone (TH) profiles of elevated thyrotropin and low thyroxine (T4) are not consistently observed. Recently, autoantibodies to the Se transporter SELENOP (SELENOP-aAb) have been identified in Hashimoto's thyroiditis and shown to impair selenoprotein expression. We hypothesized that SELENOP-aAb are prevalent in CFS, and associate with reduced selenoprotein expression and impaired TH deiodination.Se status and SELENOP-aAb prevalence was compared by combining European CFS patients (n = 167) and healthy controls (n = 545) from different sources. The biomarkers total Se, glutathione peroxidase (GPx3) and SELENOP showed linear correlations across the samples without reaching saturation, indicative of Se deficiency. SELENOP-aAb prevalence was 9.6–15.6% in CFS versus 0.9–2.0% in controls, depending on cut-off for positivity. The linear correlation between Se and GPx3 activity was absent in SELENOP-aAb positive patients, suggesting impaired Se supply of kidney. A subgroup of paired control (n = 119) and CSF (n = 111) patients had been characterized for TH and biochemical parameters before. Within this subgroup, SELENOP-aAb positive patients displayed particularly low deiodinase activity (SPINA-GD index), free T3 levels, total T3 to total T4 (TT3/TT4) and free T3 to free T4 (FT3/FT4) ratios. In 24 h urine, iodine concentrations were significantly lower in SELENOP-aAb positive than in SELENOP-aAb negative patients or controls (median (IQR); 43.2 (16.0) vs. 58.9 (45.2) vs. 89.0 (54.9) μg/L). The data indicate that SELENOP-aAb associate with low deiodination rate and reduced activation of TH to active T3.We conclude that a subset of CFS patients express SELENOP-aAb that disturb Se transport and reduce selenoprotein expression in target tissues. Hereby, TH activation decreases as an acquired condition not reflected by thyrotropin and T4 in blood. This hypothesis opens new diagnostic and therapeutic options for SELENOP-aAb positive CFS, but requires clinical evidence from intervention trials
    corecore