103 research outputs found
Pulmonary epithelium, cigarette smoke, and chronic obstructive pulmonary disease
Chronic obstructive pulmonary disease (COPD) is a complex chronic inflammatory disease involving a wide variety of cells and inflammatory mediators. The most important etiological factor in the development of this disease is cigarette smoking. Much of the research into the mechanisms of COPD has been concerned with the induction of inflammation and the role of neutrophils and macrophages in the pathophysiology of the disease. The possible contribution of the epithelium to the development of COPD has only recently become apparent and remains unclear. In this article we review research into the effect of cigarette smoke on the pulmonary epithelium with particular emphasis on oxidative stress, proteolytic load, pro-inflammatory cytokine and chemokine profile and epithelial secretions. In addition, we have also reviewed how cigarette smoke may affect epithelial damage and repair processes
Characterisation of carbon nanotubes in the context of toxicity studies
Nanotechnology has the potential to revolutionise our futures, but has also prompted concerns about the possibility that nanomaterials may harm humans or the biosphere. The unique properties of nanoparticles, that give them novel size dependent functionalities, may also have the potential to cause harm. Discrepancies in existing human health and environmental studies have shown the importance of good quality, well-characterized reference nanomaterials for toxicological studies
The histone deacetylase inhibitor, romidepsin, as a potential treatment for pulmonary fibrosis
Idiopathic pulmonary fibrosis (IPF) is a progressive disease that usually affects elderly people. It has a poor prognosis and there are limited therapies. Since epigenetic alterations are associated with IPF, histone deacetylase (HDAC) inhibitors offer a novel therapeutic strategy to address the unmet medical need. This study investigated the potential of romidepsin, an FDA-approved HDAC inhibitor, as an anti-fibrotic treatment and evaluated biomarkers of target engagement that may have utility in future clinical trials. The anti-fibrotic effects of romidepsin were evaluated both in vitro and in vivo together with any harmful effect on alveolar type II cells (ATII). Bronchoalveolar lavage fluid (BALF) from IPF or control donors was analyzed for the presence of lysyl oxidase (LOX). In parallel with an increase in histone acetylation, romidepsin potently inhibited fibroblast proliferation, myofibroblast differentiation and LOX expression. ATII cell numbers and their lamellar bodies were unaffected. In vivo, romidepsin inhibited bleomycin-induced pulmonary fibrosis in association with suppression of LOX expression. LOX was significantly elevated in BALF of IPF patients compared to controls. These data show the anti-fibrotic effects of romidepsin, supporting its potential use as novel treatment for IPF with LOX as a companion biomarker for evaluation of early on-target effects
Innate Immune Responses to Bacterial Ligands in the Peripheral Human Lung – Role of Alveolar Epithelial TLR Expression and Signalling
It is widely believed that the alveolar epithelium is unresponsive to LPS, in the absence of serum, due to low expression of TLR4 and CD14. Furthermore, the responsiveness of the epithelium to TLR-2 ligands is also poorly understood. We hypothesised that human alveolar type I (ATI) and type II (ATII) epithelial cells were responsive to TLR2 and TLR4 ligands (MALP-2 and LPS respectively), expressed the necessary TLRs and co-receptors (CD14 and MD2) and released distinct profiles of cytokines via differential activation of MAP kinases. Primary ATII cells and alveolar macrophages and an immortalised ATI cell line (TT1) elicited CD14 and MD2-dependent responses to LPS which did not require the addition of exogenous soluble CD14. TT1 and primary ATII cells expressed CD14 whereas A549 cells did not, as confirmed by flow cytometry. Following LPS and MALP-2 exposure, macrophages and ATII cells released significant amounts of TNFα, IL-8 and MCP-1 whereas TT1 cells only released IL-8 and MCP-1. P38, ERK and JNK were involved in MALP-2 and LPS-induced cytokine release from all three cell types. However, ERK and JNK were significantly more important than p38 in cytokine release from macrophages whereas all three were similarly involved in LPS-induced mediator release from TT1 cells. In ATII cells, JNK was significantly more important than p38 and ERK in LPS-induced MCP-1 release. MALP-2 and LPS exposure stimulated TLR4 protein expression in all three cell types; significantly more so in ATII cells than macrophages and TT1 cells. In conclusion, this is the first study describing the expression of CD14 on, and TLR2 and 4 signalling in, primary human ATII cells and ATI cells; suggesting that differential activation of MAP kinases, cytokine secretion and TLR4 expression by the alveolar epithelium and macrophages is important in orchestrating a co-ordinated response to inhaled pathogens
- …