936 research outputs found

    Near-infrared spectroscopy detects age-related differences in skeletal muscle oxidative function: promising implications for geroscience

    Get PDF
    Age is the greatest risk factor for chronic disease and is associated with a marked decline in functional capacity and quality of life. A key factor contributing to loss of function in older adults is the decline in skeletal muscle function. While the exact mechanism(s) remains incompletely understood, age-related mitochondrial dysfunction is thought to play a major role. To explore this question further, we studied 15 independently living seniors (age: 72 ± 5 years; m/f: 4/11; BMI: 27.6 ± 5.9) and 17 young volunteers (age: 25 ± 4 years; m/f: 8/9; BMI: 24.0 ± 3.3). Skeletal muscle oxidative function was measured in forearm muscle from the recovery kinetics of muscle oxygen consumption using near-infrared spectroscopy (NIRS). Muscle oxygen consumption was calculated as the slope of change in hemoglobin saturation during a series of rapid, supra-systolic arterial cuff occlusions following a brief bout of exercise. Aging was associated with a significant prolongation of the time constant of oxidative recovery following exercise (51.8 ± 5.4 sec vs. 37.1 ± 2.1 sec, P = 0.04, old vs. young, respectively). This finding suggests an overall reduction in mitochondrial function with age in nonlocomotor skeletal muscle. That these data were obtained using NIRS holds great promise in gerontology for quantitative assessment of skeletal muscle oxidative function at the bed side or clinic

    Selective inhibition of kindling development by intraventricular administration of TrkB receptor body.

    Get PDF
    Recent work has shown that neurotrophin gene expression is increased after seizures evoked in the kindling model of epilepsy, but whether neurotrophins regulate kindling development is as yet unclear. In this study, we attempted to block selectively the activation of distinct neurotrophin receptors throughout kindling development in the rat via chronic intracerebroventricular administration of trk receptor bodies. The efficacy and selectivity of the trk receptor bodies were established by inhibition of neurotrophin-induced trk receptor phosphorylation in pheochromocytoma (PC12) cells and primary cultures of cortical neurons. The intracerebroventricular infusion of trkB receptor body (trkB-Fc) inhibited development of kindling in comparison with that seen with saline or human IgG controls, trkA-Fc, or trkC-Fc. These results imply that activation of trkB receptors contributes to the development of kindling, a form of activitydependent behavioral plasticity in the adult mammalian brain

    Targeted Expression of Catalase to Mitochondria Protects Against Ischemic Myopathy in High-Fat Diet-Fed Mice

    Get PDF
    Patients with type 2 diabetes respond poorly to treatments for peripheral arterial disease (PAD) and are more likely to present with the most severe manifestation of the disease, critical limb ischemia. The underlying mechanisms linking type 2 diabetes and the severity of PAD manifestation are not well understood. We sought to test whether diet-induced mitochondrial dysfunction and oxidative stress would increase the susceptibility of the peripheral limb to hindlimb ischemia (HLI). Six weeks of high-fat diet (HFD) in C57BL/6 mice was insufficient to alter skeletal muscle mitochondrial content and respiratory function or the size of ischemic lesion after HLI, despite reducing blood flow. However, 16 weeks of HFD similarly decreased ischemic limb blood flow, but also exacerbated limb tissue necrosis, increased the myopathic lesion size, reduced muscle regeneration, attenuated muscle function, and exacerbated ischemic mitochondrial dysfunction. Mechanistically, mitochondrial-targeted overexpression of catalase prevented the HFD-induced ischemic limb necrosis, myopathy, and mitochondrial dysfunction, despite no improvement in limb blood flow. These findings demonstrate that skeletal muscle mitochondria are a critical pathological link between type 2 diabetes and PAD. Furthermore, therapeutically targeting mitochondria and oxidant burden is an effective strategy to alleviate tissue loss and ischemic myopathy during PAD

    Exercise-Induced Protection Against Reperfusion Arrhythmia Involves Stabilization of Mitochondrial Energetics

    Get PDF
    Mitochondria influence cardiac electrophysiology through energy- and redox-sensitive ion channels in the sarcolemma, with the collapse of energetics believed to be centrally involved in arrhythmogenesis. This study was conducted to determine if preservation of mitochondrial membrane potential (ΔΨ(m)) contributes to the antiarrhythmic effect of exercise. We utilized perfused hearts, isolated myocytes, and isolated mitochondria exposed to metabolic challenge to determine the effects of exercise on cardiac mitochondria. Hearts from sedentary (Sed) and exercised (Ex; 10 days of treadmill running) Sprague-Dawley rats were perfused on a two-photon microscope stage for simultaneous measurement of ΔΨ(m) and ECG. After ischemia-reperfusion, the collapse of ΔΨ(m) was commensurate with the onset of arrhythmia. Exercise preserved ΔΨ(m) and decreased the incidence of fibrillation/tachycardia (P < 0.05). Our findings in intact hearts were corroborated in isolated myocytes exposed to in vitro hypoxia-reoxygenation, with Ex rats demonstrating enhanced redox control and sustained ΔΨ(m) during reoxygenation. Finally, we induced anoxia-reoxygenation in isolated mitochondria using high-resolution respirometry with simultaneous measurement of respiration and H(2)O(2). Mitochondria from Ex rats sustained respiration with lower rates of H(2)O(2) emission than Sed rats. Exercise helps sustain postischemic mitochondrial bioenergetics and redox homeostasis, which is associated with preserved ΔΨ(m) and protection against reperfusion arrhythmia. The reduction of fatal ventricular arrhythmias through exercise-induced mitochondrial adaptations indicates that mitochondrial therapeutics may be an effective target for the treatment of heart disease

    Hundreds of millions of people in the tropics need both wild harvests and other forms of economic development for their well-being

    Get PDF
    Summary Local access to “wild,” common-pool terrestrial and aquatic resources is being diminished by global resource demand and large-scale conservation interventions. Many theories suggest the well-being of wild harvesters can be supported through transitions to other livelihoods, improved infrastructure, and market access. However, new theories argue that such benefits may not always occur because they are context dependent and vary across dimensions of well-being. We test these theories by comparing how wild harvesting and other livelihoods have been associated with food security and life satisfaction in different contexts across ∼10,800 households in the tropics. Wild harvests coincided with high well-being in remote, asset-poor, and less-transformed landscapes. Yet, overall, well-being increased with electrical infrastructure, proximity to cities, and household capitals. This provides large-scale confirmation of the context dependence of nature’s contributions to people, and suggests a need to maintain local wild resource access while investing in equitable access to infrastructure, markets, and skills

    Rosiglitazone Induces Mitochondrial Biogenesis in Differentiated Murine 3T3-L1 and C3H/10T1/2 Adipocytes

    Get PDF
    Growing evidence indicates that PPARγ agonists, including rosiglitazone (RSG), induce adipose mitochondrial biogenesis. By systematically analyzing mitochondrial gene expression in two common murine adipocyte models, the current study aimed to further establish the direct role of RSG and capture temporal changes in gene transcription. Microarray profiling revealed that in fully differentiated 3T3-L1 and C3H/10T1/2 adipocytes treated with RSG or DMSO vehicle for 1, 2, 4, 7, 24, and 48 hrs, RSG overwhelmingly increased mitochondrial gene transcripts time dependently. The timing of the increases was consistent with the cascade of organelle biogenesis, that is, initiated by induction of transcription factor(s), followed by increases in the biosynthesis machinery, and then by increases in functional components. The transcriptional increases were further validated by increased mitochondrial staining, citrate synthase activity, and O2 consumption, and were found to be associated with increased adiponectin secretion. The work provided further insight on the mechanism of PPARγ-induced mitochondrial biogenesis in differentiated adipocytes
    corecore