2 research outputs found

    Canine follicular development treated by hormones

    Get PDF
    Ovarian follicular dynamics is not well known in dogs. Imaging of ovaries is technically difficult; however, ovaries clamped at a subcutaneous site can more easily be monitored using ultrasound imaging. This study investigated the follicular development of canine ovaries stimulated by hormone treatment using ultrasound imaging of the ovaries clamped at a subcutaneous site. Oestrus was induced using subcutaneous administration of 500 IU equine chorionic gonadotropin (eCG) and 1000 IU human chorionic gonadotropin (hCG) (eCG/hCG). Five bitches were given 1000 IU hCG 11 days after eCG/hCG administration. Examinations with ovarian ultrasonography using a 7.5‐MHz sector transducer, vaginal cytology, and assays of serum oestrogen and progesterone were performed daily until 20 days after eCG/hCG administration. Serosanguineous vaginal discharges and vaginal cytology of two of the bitches were observed. New follicular growth (>1.0 mm in diameter) was observed in all bitches from 2 to 8 days after eCG/hCG administration. The mean diameter of follicles and maximum numbers of follicles per ovary ranged from 2.8 to 5.5 mm and 4 to 16, respectively. The elevation in oestrogen concentrations after eCG/hCG administration was observed in all bitches, and elevation in progesterone concentration (>2 ng mL−1) was observed in three bitches. However, no follicles ovulated until 9 days after hCG administration. In conclusion, although the number of examined bitches were limited, follicular growth in ovaries clamped at a subcutaneous site can be monitored using ultrasound imaging. Ovarian ultrasonography showed that eCG/hCG administration induced new follicular growth and hCG administration induced increases in oestrogen concentrations but not ovulation by hCG administration

    Vaginal stimulation enhances ovulation of queen ovaries treated using a combination of eCG and hCG

    Get PDF
    Follicular changes throughout the oestrous phase have been poorly documented in queens because of the location and the small size of ovaries. We investigated follicular development in queens treated with a combination of equine chorionic gonadotropin (eCG) and human chorionic gonadotropin (hCG) and evaluated the effects of vaginal stimulation by a tomcat on ovulation induction. A hormonal treatment was administered using a simple crossover design. Four queens were administered 150 IU of eCG (day 1) and 250 IU of hCG on day 5 and 6. Half of the queens were mated with a vasectomised tomcat for 3 days after hCG injection. Ultrasound imaging of the ovaries clamped at a subcutaneous site was performed once a day from day 1 to 7, and on day 13, and the serum concentrations of oestradiol and progesterone were examined on day 1, 5, 7 and 13. The mean number of follicles gradually increased with the eCG treatment and decreased after hCG injection. The ovulation rate of follicles was significantly higher in the vaginal stimulation group (70.0%) than in the control group (42.6%). During the hormonal treatments, the serum concentration of oestradiol and progesterone did not differ between the two groups. Ultrasound imaging of the ovaries clamped at a subcutaneous site showed that eCG and hCG treatment promoted the follicular growth and corpus luteum formation, respectively. The combination of hCG injection with vaginal stimulation by a vasectomised tomcat enhanced the ovulation rate of follicles
    corecore