5 research outputs found

    Structure of l-rhamnose isomerase in complex with l-rhamnopyranose demonstrates the sugar-ring opening mechanism and the role of a substrate sub-binding site

    Get PDF
    Abstractl-Rhamnose isomerase (l-RhI) catalyzes the reversible isomerization of l-rhamnose to l-rhamnulose. Previously determined X-ray structures of l-RhI showed a hydride-shift mechanism for the isomerization of substrates in a linear form, but the mechanism for opening of the sugar-ring is still unclear. To elucidate this mechanism, we determined X-ray structures of a mutant l-RhI in complex with l-rhamnopyranose and d-allopyranose. Results suggest that a catalytic water molecule, which acts as an acid/base catalyst in the isomerization reaction, is likely to be involved in pyranose-ring opening, and that a newly found substrate sub-binding site in the vicinity of the catalytic site may recognize different anomers of substrates

    X-ray Structures of Human Galectin-9 C-terminal Domain in Complexes with a Biantennary Oligosaccharide and Sialyllactose*

    No full text
    Galectin-9, a tandem-repeat-type β-galactoside-specific animal lectin with two carbohydrate recognition domains (CRDs) at the N- and C-terminal ends, is involved in chemoattraction, apoptosis, and the regulation of cell differentiation and has anti-allergic effects. Its ability to recognize carbohydrates is essential for its biological functions. Human galectin-9 (hG9) has high affinity for branched N-glycan-type oligosaccharides (dissociation constants of 0.16–0.70 μm) and linear β1–3-linked poly-N-acetyllactosamines (0.09–8.3 μm) and significant affinity for the α2–3-sialylated oligosaccharides (17–34 μm). Further, its N-terminal CRD (hG9N) and C-terminal CRD (hG9C) differ in specificity. To elucidate this unique feature of hG9, x-ray structures of hG9C in the free form and in complexes with N-acetyllactosamine, the biantennary pyridylaminated oligosaccharide, and α2–3-sialyllactose were determined. They are the first x-ray structural analysis of C-terminal CRD of the tandem-repeat-type galectin. The results clearly revealed the mechanism by which branched and α2–3-sialylated oligosaccharides are recognized and explained the difference in specificity between hG9N and hG9C. Based on structural comparisons with other galectins, we propose that the wide entrance for ligand binding and the shallow binding site of hG9C are favorable for branched oligosaccharides and that Arg221 is responsible for recognizing sialylated oligosaccharides
    corecore