1,182 research outputs found

    Dynamics of an Acoustic Polaron in One-Dimensional Electron-Lattice System

    Full text link
    The dynamical behavior of an acoustic polaron in typical non-degenerate conjugated polymer, polydiacetylene, is numerically studied by using Su-Schrieffer-Heeger's model for the one dimensional electron-lattice system. It is confirmed that the velocity of a polaron accelerated by a constant electric field shows a saturation to a velocity close to the sound velocity of the system, and that the width of a moving polaron decreases as a monotonic function of the velocity tending to zero at the saturation velocity. The effective mass of a polaron is estimated to be about one hundred times as heavy as the bare electron mass. Furthermore the linear mode analysis in the presence of a polaron is carried out, leading to the conclusion that there is only one localized mode, i.e. the translational mode. This is confirmed also from the phase shift of extended modes. There is no localized mode corresponding to the amplitude mode in the case of the soliton in polyacetylene. Nevertheless the width of a moving polaron shows small oscillations in time. This is found to be related to the lowest odd symmetry extended mode and to be due to the finite size effect.Comment: 12 pages, latex, 9 figures (postscript figures abailble on request to [email protected]) to be published in J. Phys. Soc. Jpn. vol.65 (1996) No.

    Superconducting nanowire single-photon detectors with non-periodic dielectric multilayers

    Get PDF
    We present superconducting nanowire single-photon detectors (SSPDs) on non-periodic dielectric multilayers, which enable us to design a variety of wavelength dependences of optical absorptance by optimizing the dielectric multilayer. By adopting a robust simulation to optimize the dielectric multilayer, we designed three types of SSPDs with target wavelengths of 500 nm, 800 nm, and telecom range respectively. We fabricated SSPDs based on the optimized designs for 500 and 800 nm, and evaluated the system detection efficiency at various wavelengths. The results obtained confirm that the designed SSPDs with non-periodic dielectric multilayers worked well. This versatile device structure can be effective for multidisciplinary applications in fields such as the life sciences and remote sensing that require high efficiency over a precise spectral range and strong signal rejection at other wavelengths
    • …
    corecore