1,328 research outputs found

    Dynamics of an Acoustic Polaron in One-Dimensional Electron-Lattice System

    Full text link
    The dynamical behavior of an acoustic polaron in typical non-degenerate conjugated polymer, polydiacetylene, is numerically studied by using Su-Schrieffer-Heeger's model for the one dimensional electron-lattice system. It is confirmed that the velocity of a polaron accelerated by a constant electric field shows a saturation to a velocity close to the sound velocity of the system, and that the width of a moving polaron decreases as a monotonic function of the velocity tending to zero at the saturation velocity. The effective mass of a polaron is estimated to be about one hundred times as heavy as the bare electron mass. Furthermore the linear mode analysis in the presence of a polaron is carried out, leading to the conclusion that there is only one localized mode, i.e. the translational mode. This is confirmed also from the phase shift of extended modes. There is no localized mode corresponding to the amplitude mode in the case of the soliton in polyacetylene. Nevertheless the width of a moving polaron shows small oscillations in time. This is found to be related to the lowest odd symmetry extended mode and to be due to the finite size effect.Comment: 12 pages, latex, 9 figures (postscript figures abailble on request to [email protected]) to be published in J. Phys. Soc. Jpn. vol.65 (1996) No.

    Nonlinear optical response in doped conjugated polymers

    Full text link
    Exciton effects on conjugated polymers are investigated in soliton lattice states. We use the Su-Schrieffer-Heeger model with long-range Coulomb interactions. The Hartree-Fock (HF) approximation and the single-excitation configuration- interaction (single-CI) method are used to obtain optical absorption spectra. The third-harmonic generation (THG) at off-resonant frequencies is calculated as functions of the soliton concentration and the chain length of the polymer. The magnitude of the THG at the 10 percent doping increases by the factor about 10^2 from that of the neutral system. This is owing to the accumulation of the oscillator strengths at the lowest exciton with increasing the soliton concentration. The increase by the order two is common for several choices of Coulomb interaction strengths.Comment: Accepted for publication in J. Phys.: Condens. Matte

    Superconducting nanowire single-photon detectors with non-periodic dielectric multilayers

    Get PDF
    We present superconducting nanowire single-photon detectors (SSPDs) on non-periodic dielectric multilayers, which enable us to design a variety of wavelength dependences of optical absorptance by optimizing the dielectric multilayer. By adopting a robust simulation to optimize the dielectric multilayer, we designed three types of SSPDs with target wavelengths of 500 nm, 800 nm, and telecom range respectively. We fabricated SSPDs based on the optimized designs for 500 and 800 nm, and evaluated the system detection efficiency at various wavelengths. The results obtained confirm that the designed SSPDs with non-periodic dielectric multilayers worked well. This versatile device structure can be effective for multidisciplinary applications in fields such as the life sciences and remote sensing that require high efficiency over a precise spectral range and strong signal rejection at other wavelengths

    Nitrate reductase activities in plants from different ecological and taxonomic groups grown in Japan

    Get PDF
    SPECIAL FEATURE: Data rescue—collection of precious and laborious in situ observed dataPlants generally use soil inorganic nitrogen, ammonium (NH₄⁺-N), and nitrate (NO₃⁻–N) as sources of nitrogen, an essential nutrient. The assimilation processes after uptake differ considerably from ammonium to nitrate. Nitrate must be reduced to ammonium in plant tissue before it is synthesized to amino acids, while ammonium is directly and immediately synthesized to amino acids after its uptake. Nitrate reductase is an enzyme that catalyzes the first and rate‐limiting step of nitrate assimilation, reducing nitrate to nitrite. It is a substrate‐inducible enzyme, and the capacity to induce nitrate reductase varies greatly among plant species. In vivo nitrate reductase activity (NRA) is generally measured as a nitrite production rate during incubation using fine cut pieces of plant tissue, and it is applicable as an indicator on plant nitrate use. Here we present in vivo NRA of leaves from a total of 108 species including arboreal trees, small trees, shrubs, herbs, a vine and a moss. For 75 of the species, NRA in fine roots was also determined. At least 20 species in sampled plants were imported and planted for scientific or industrial purposes, but most sampled species were native to Japan. Several inventory studies of plant NRA have been conducted, mainly in Europe, and they provided information on the species‐specific capacity of nitrate use by plants in Europe. However, to our best knowledge, there has been hitherto no published inventory of the NRA of plants in Japan where many endemic species are distributed. Our dataset contains plant NRA with species, family name, life form, leaf lifespan (evergreen or deciduous), growth stage, the season of sample collection, growth conditions (natural or cultivated) and other treatments/conditions when applicable. The data provided by this study may contribute to future works that require information regarding the plant species characteristics for nitrate use capacity or nitrate preference
    corecore