225 research outputs found
Recommended from our members
INL Capabilities For Nuclear Data Measurements Using The Argonne Intense Pulsed Neutron Source Facility
The relevant facts concerning the Argonne National Laboratory – Intense Pulsed Neutron Source (ANL/IPNS) and the Idaho National Laboratory (INL) apparatus for use at the ANL/IPNS facility to measure differential neutron interaction cross sections of interest for advanced reactor physics applications are presented. The INL apparatus, which consists of an array of multiple types of multiple detectors operated in coincidence, signal electronics, and a data acquisition system, is presented as an application of new means and methods to measure the relevant parameters described. The immediate measurement goals involve measurement of neutron induced interaction cross sections for 240Pu and 242Pu with 241Pu, 241Am, with measurements for other nuclides of interest for advanced reactor physics applications to follow later. Specific uncertainties and error limits are presented and methods for controlling these uncertainties are described. The post experiment analysis using data sorts and data selection from a large, self-consistent data set to produce spectra that will be analyzed for direct results and used to determine cross sections is also discussed
Calculations of He+p Elastic Cross Sections Using Microscopic Optical Potential
An approach to calculate microscopic optical potential (OP) with the real
part obtained by a folding procedure and with the imaginary part inherent in
the high-energy approximation (HEA) is applied to study the He+p elastic
scattering data at energies of tens of MeV/nucleon (MeV/N). The neutron and
proton density distributions obtained in different models for He are
utilized in the calculations of the differential cross sections. The role of
the spin-orbit potential is studied. Comparison of the calculations with the
available experimental data on the elastic scattering differential cross
sections at beam energies of 15.7, 26.25, 32, 66 and 73 MeV/N is performed. The
problem of the ambiguities of the depths of each component of the optical
potential is considered by means of the imposed physical criterion related to
the known behavior of the volume integrals as functions of the incident energy.
It is shown also that the role of the surface absorption is rather important,
in particular for the lowest incident energies (e.g., 15.7 and 26.25
MeV/nucleon).Comment: 11 pages, 7 figures, accepted for publication in Physical Review
Three-body correlations in direct reactions: Example of Be populated in reaction
The Be continuum states were populated in the charge-exchange reaction
H(Li,Be) collecting very high statistics data ( events) on the three-body ++ correlations. The
Be excitation energy region below MeV is considered, where the
data are dominated by contributions from the and states. It is
demonstrated how the high-statistics few-body correlation data can be used to
extract detailed information on the reaction mechanism. Such a derivation is
based on the fact that highly spin-aligned states are typically populated in
the direct reactions.Comment: submitted to Physical Review
Charge and matter distributions and form factors of light, medium and heavy neutron-rich nuclei
Results of charge form factors calculations for several unstable neutron-rich
isotopes of light, medium and heavy nuclei (He, Li, Ni, Kr, Sn) are presented
and compared to those of stable isotopes in the same isotopic chain. For the
lighter isotopes (He and Li) the proton and neutron densities are obtained
within a microscopic large-scale shell-model, while for heavier ones Ni, Kr and
Sn the densities are calculated in deformed self-consistent mean-field Skyrme
HF+BCS method. We also compare proton densities to matter densities together
with their rms radii and diffuseness parameter values. Whenever possible
comparison of form factors, densities and rms radii with available experimental
data is also performed. Calculations of form factors are carried out both in
plane wave Born approximation (PWBA) and in distorted wave Born approximation
(DWBA). These form factors are suggested as predictions for the future
experiments on the electron-radioactive beam colliders where the effect of the
neutron halo or skin on the proton distributions in exotic nuclei is planned to
be studied and thereby the various theoretical models of exotic nuclei will be
tested.Comment: 26 pages, 11 figures, 3 tables, accepted for publication in Phys.
Rev.
New insight into the low-energy He spectrum
The spectrum of He was studied by means of the He(,)He
reaction at a lab energy of 25 MeV/n and small center of mass (c.m.) angles.
Energy and angular correlations were obtained for the He decay products by
complete kinematical reconstruction. The data do not show narrow states at
1.3 and 2.4 MeV reported before for He. The lowest resonant
state of He is found at about 2 MeV with a width of 2 MeV and is
identified as . The observed angular correlation pattern is uniquely
explained by the interference of the resonance with a virtual state
(limit on the scattering length is obtained as fm), and with
the resonance at energy MeV.Comment: 5 pages, 4 figures, 2 table
Das Beinenhaus Marsch, Op. 124
For voice and piano. Cover illustrated in color and signed by Birgit Krohn in the upper right hand corner. Plate number 796.https://scholarexchange.furman.edu/krohn-album3/1032/thumbnail.jp
Investigation of the 6He cluster structures
The 4He+2n and t+t clustering of the 6He ground state were investigated by
means of the transfer reaction 6He(p,t)4He at 25 MeV/nucleon. The experiment
was performed in inverse kinematics at GANIL with the SPEG spectrometer coupled
to the MUST array. Experimental data for the transfer reaction were analyzed by
a DWBA calculation including the two neutrons and the triton transfer. The
couplings to the 6He --> 4He + 2n breakup channels were taken into account with
a polarization potential deduced from a coupled-discretized-continuum channels
analysis of the 6He+1H elastic scattering measured at the same time. The
influence on the calculations of the 4He+t exit potential and of the triton
sequential transfer is discussed. The final calculation gives a spectroscopic
factor close to one for the 4He+2n configuration as expected. The spectroscopic
factor obtained for the t+t configuration is much smaller than the theoretical
predictions.Comment: 10 pages, 11 figures, accepted in PR
- …