5 research outputs found

    Object Tracking and Classification System Using Agent Search

    No full text

    Interactions of the N- and C-Terminal SH3 Domains of <i>Drosophila</i> Drk with the Proline-Rich Peptides from Sos and Dos

    No full text
    Drk, a homologue of human GRB2 in Drosophila, receives signals from outside the cells through the interaction of its SH2 domain with the phospho-tyrosine residues in the intracellular regions of receptor tyrosine kinases (RTKs) such as Sevenless, and transduces the signals downstream through the association of its N- and C-terminal SH3 domains (Drk-NSH3 and Drk-CSH3, respectively) with proline-rich motifs (PRMs) in Son of Sevenless (Sos) or Daughter of Sevenless (Dos). Isolated Drk-NSH3 exhibits a conformational equilibrium between the folded and unfolded states, while Drk-CSH3 adopts only a folded confirmation. Drk interacts with PRMs of the PxxPxR motif in Sos and the PxxxRxxKP motif in Dos. Our previous study has shown that Drk-CSH3 can bind to Sos, but the interaction between Drk-NSH3 and Dos has not been investigated. To assess the affinities of both SH3 domains towards Sos and Dos, we conducted NMR titration experiments using peptides derived from Sos and Dos. Sos-S1 binds to Drk-NSH3 with the highest affinity, strongly suggesting that the Drk-Sos multivalent interaction is initiated by the binding of Sos-S1 and NSH3. Our results also revealed that the two Sos-derived PRMs clearly favour NSH3 for binding, whereas the two Dos-derived PRMs show almost similar affinity for NSH3 and CSH3. We have also performed docking simulations based on the chemical shift perturbations caused by the addition of Sos- and Dos-derived peptides. Finally, we discussed the various modes in the interactions of Drk with Sos/Dos

    NMR protein structure determination in living E. coli cells using nonlinear sampling

    No full text
    The cell is a crowded environment in which proteins interact specifically with other proteins, nucleic acids, cofactors and ligands. Atomic resolution structural explanation of proteins functioning in this environment is a main goal of biochemical research. Recent improvements to nuclear magnetic resonance (NMR) hardware and methodology allow the measurement of high-resolution heteronuclear multidimensional NMR spectra of macromolecules in living cells (in-cell NMR). In this study, we describe a protocol for the stable isotope (13C, 15N and 2H) labeling and structure determination of proteins overexpressed in Escherichia coli cells exclusively on the basis of information obtained in living cells. The protocol combines the preparation of the protein in E. coli cells, the rapid measurement of the three-dimensional (3D) NMR spectra by nonlinear sampling of the indirectly acquired dimensions, structure calculation and structure refinement. Under favorable circumstances, this in-cell NMR approach can provide high-resolution 3D structures of proteins in living environments. The protocol has been used to solve the first 3D structure of a protein in living cells for the putative heavy metal-binding protein TTHA1718 from Thermus thermophilus HB8 overexpressed in E. coli cells. As no protein purification is necessary, a sample for in-cell NMR measurements can be obtained within 2-3 d. With the nonlinear sampling scheme, the duration of each 3D experiment can be reduced to 2-3 h. Once chemical shift assignments and NOESY peak lists have been prepared, structure calculation with the program CYANA and energy refinement can be completed in less than 1 h on a powerful computer system
    corecore